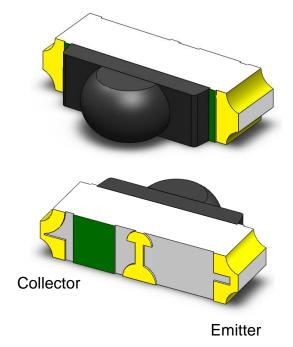
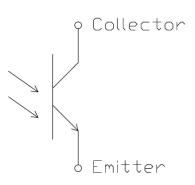


Features

- Small double-end package
- High photo sensitivity
- High reliability
- Spectral range of sensitivity: 760-1100nm
- Fast Response time
- RoHS compliance


Applications

- Infrared sensor
- Infrared Touch Panel Solutions


Description

The PTP82406BT14 is silicon NPN Phototransistor housed in a miniature SMD package. The device comes with a superior filtering for visible light by utilizing special black molding compound.

Package Outline

Schematic

Absolute Maximum Rating at 25°C

Symbol	Parameters	Ratings	Units	Notes
Ic	Collector Current	20	mA	
Bvceo	Collector-Emitter Voltage	35	V	1
B _{VECO}	Emitter-Collector Voltage	5	V	2
Topr	Operating Temperature	-40 ~ +85	°C	
T _{stg}	Storage Temperature	-40 ~ +100	°C	
T _{sol}	Soldering Temperature	260	°C	3
Pto	Total Power Dissipation	150	mW	

Optical Characteristics

Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
λ	Spectral Bandwidth	-	700	•	1100	nm	
λ _P	Peak Sensitivity	-	-	880	-	nm	
01/2	View Angle at X axis	V 5V	-	±50	-	dog	4
θ1/2	View Angle at Y axis	V _{CE} =5V	-	±35	-	deg	4

Electrical Characteristics

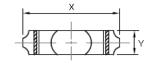
Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
la-a	Dark Current	Ee=0mW /cm ²			100	nA	
ICEO	Dark Current	V _{CE} =20V	-	-	100	IIA	
V	Collector-Emitter	Ee=1mW /cm ²			0.4	\/	
V _{CE(sat)}	Saturation Voltage	Ic=0.5mA	-	-	0.4	V	
la la	Collector Light Current	Ee=1mW /cm ²	0.5	1.0	1.0 -	mA	
Ic	Collector Light Current	$\lambda_P=940nm,\ V_{CE}=5V$		1.0			
C-	Torminal Canacitanae	Ee=0mW /cm ²		3.80		nE	
Ст	Terminal Capacitance	f=1MHz ,V _{CE} =5V	-	3.60	-	pF	

PTP82406BT14

SMD Type Phototransistor with Daylight Filter

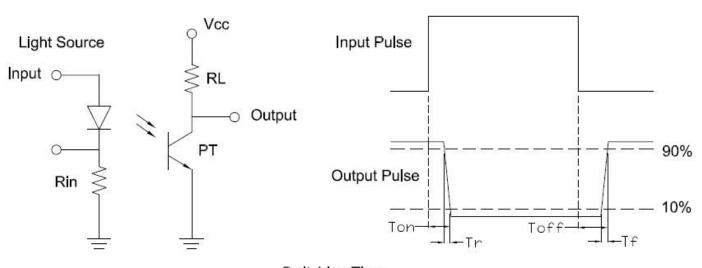
Switching Characteristics

Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
tr	Rise Time		-	6	1		
t _f	Fall Time	$V_{ce} = 5V$, $R_L = 100\Omega$	-	7	-		F
t _{on}	Turn on Delay Time	Ic=1.0mA	-	11	-	μs	5
t _{off}	Turn off Delay Time		-	7.9	-		


Notes:

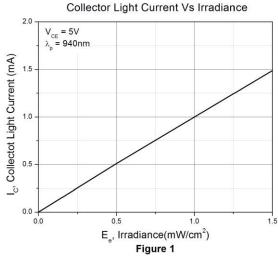
1 : Test conditions : $I_C=100\mu A$, $Ee=0mW/cm^2$.

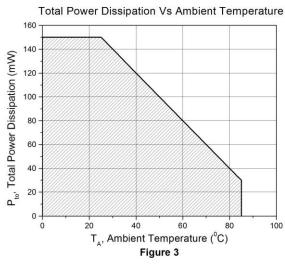
2: Test conditions: I_E=100µA, Ee=0mW/cm².

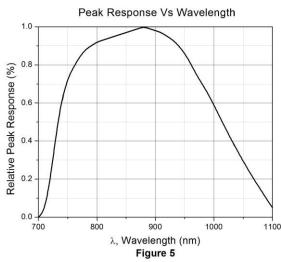

3 : Soldering time \leq 5 seconds.

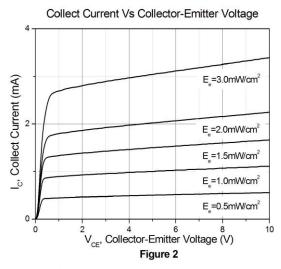
4: Test condition:

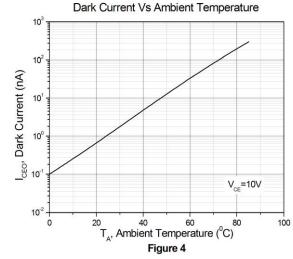
5 : Test circuit :

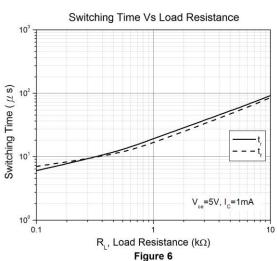

Detector

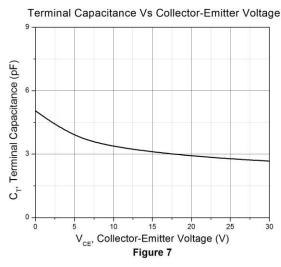


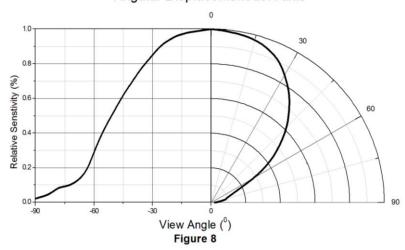


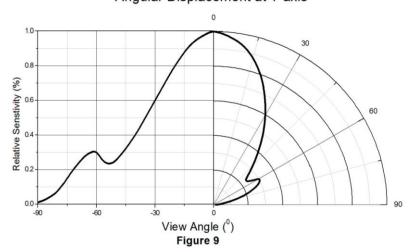



Typical Characteristic Curves

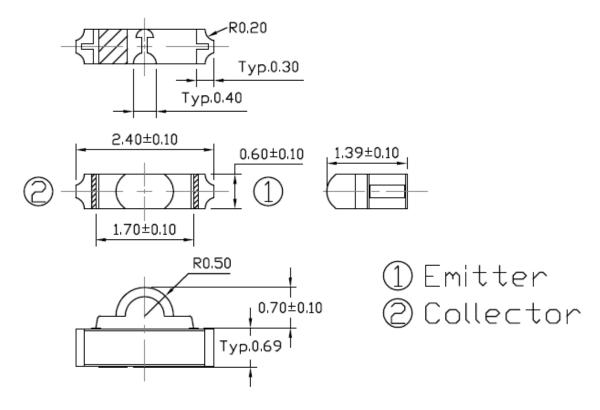




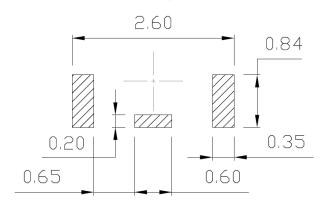



Typical Characteristic Curves

Angular Displacement at X axis

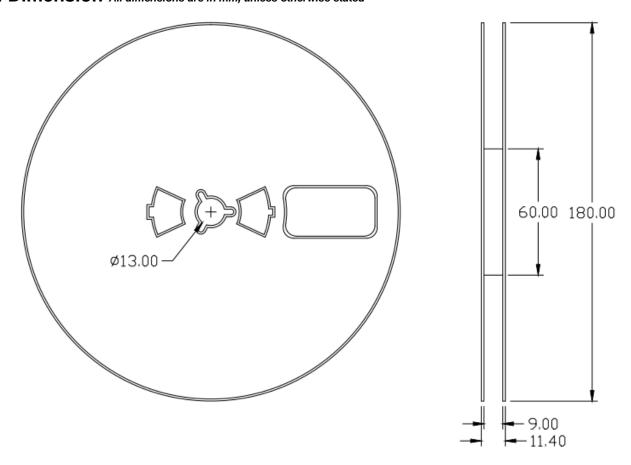


Angular Displacement at Y axis

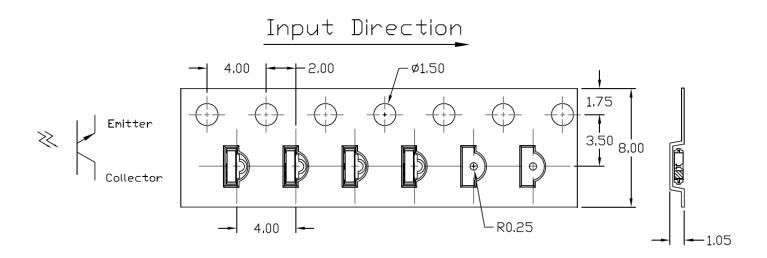


Package Dimension All dimensions are in mm, unless otherwise stated

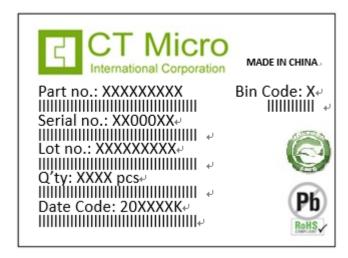
Recommended Soldering Mask All dimensions are in mm, unless otherwise stated


Ordering Information

Part Number	Description	Quantity
PTP82406BT14	Tape & Reel	5000 pcs



Reel Dimension All dimensions are in mm, unless otherwise stated


Tape Dimension All dimensions are in mm, unless otherwise stated

Label Form Specification

Part no: CTM Production Number Serial no: Production Number

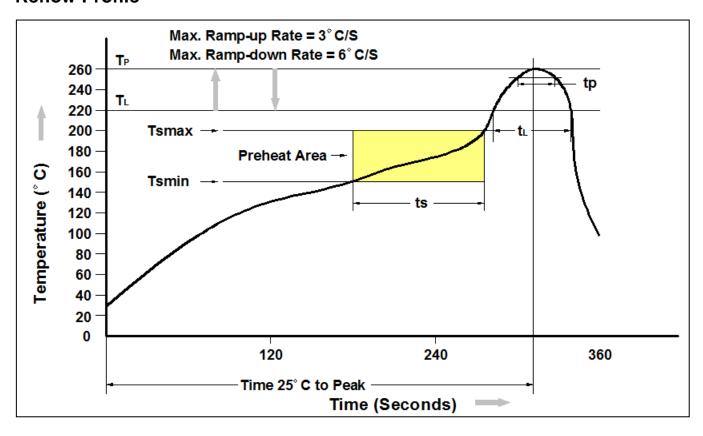
Lot no: Lot number

Q'ty: Packing Quantity

Date Code: Manufacture Date

Bin Code: Ic Ranks

MADE IN CHINA: Production Place


Storage Condition

- 1. Do not open moisture proof bag before the products are ready to use.
- 2. The moisture barrier bag should be stored at 30°C and 90%R.H. max. before opening. Shelf life of non-opened bag is 12 months after the bag sealing date.
- 3. After opening the moisture barrier bag floor life is 168h at 30°C/60%RH. max. Unused LEDs should be resealed into moisture barrier bag. (Refer to J-STD-020 Standard)
- 4. If the moisture absorbent material has faded away or the LEDs have exceeded the storage time, baking treatment should be performed using the J-STD-033 Standard conditions.

Reflow Profile

Profile Feature	Pb-Free Assembly Profile
Temperature Min. (Tsmin)	150°C
Temperature Max. (Tsmax)	200°C
Time (ts) from (Tsmin to Tsmax)	60-120 seconds
Ramp-up Rate (t∟ to t _P)	3°C/second max.
Liquidous Temperature (T _L)	217°C
Time (t _L) Maintained Above (T _L)	60 – 150 seconds
Peak Body Package Temperature	260°C +0°C / -5°C
Time (t _P) within 5°C of 260°C	30 seconds
Ramp-down Rate (T _P to T _L)	6°C/second max
Time 25°C to Peak Temperature	8 minutes max.

PTP82406BT14

SMD Type Phototransistor with Daylight Filter

DISCLAIMER

CT MICRO RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. CT MICRO DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

CT MICRO ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT EXPRESS WRITTEN APPROVAL OF CT MICRO INTERNATIONAL CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instruction for use provided in the labelling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.