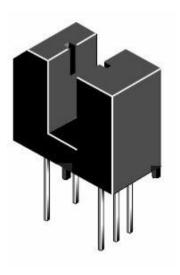
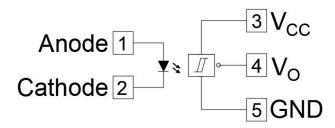


Features

- No Contact Sensing
- 5.0mm gap
- 0.5mm aperture
- Opaque black plastic housing
- RoHS compliance


The PIT5005T/01 is a slotted optical switch designed for multipurpose non contact sensing. It consists of a GaAs LED and a silicon LOGIC OUPUT sensor packaged in an injection molded housing, facing each other across a 5mm gap. The product is TTL/CMOS compatible.

Applications


Infrared sensor

Description

Package Outline

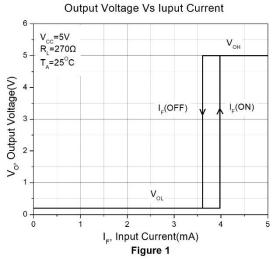
Schematic

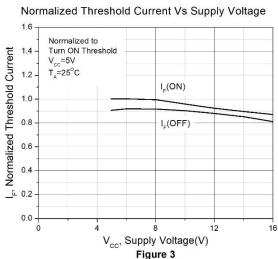
Absolute Maximum Rating at 25°C

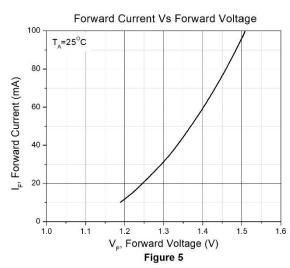
Symbol	Parameters	Ratings	Units	Notes
Topr	Operating Temperature	-40 ~ +85	°C	
T _{stg}	Storage Temperature	-40 ~ +85	°C	
T _{sol-I}	Soldering Temperature(Solder Iron)	240 for 5 sec	°C	3,4,5,6
T _{sol-F}	Soldering Temperature (Solder Flow)	240 for 10 sec	0C	3,5,6
Emitter				
l _F	Continuous Forward Current	50	mA	6
VR	Reverse Voltage	5	V	
PD	Power Dissipation	100	mW	1
Sensor				
lo	Output Current	50	mA	
Vcc	Supply Voltage	16	V	
Vo	Output Voltage	30	V	
PD	Power Dissipation	150	mW	2

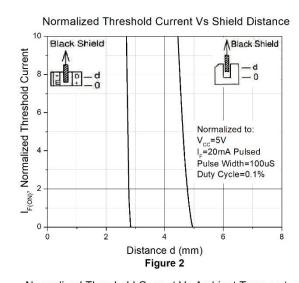
Notes:

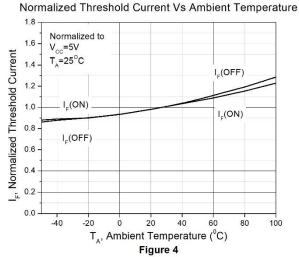
- 1. Derate power dissipation linearly, on Emitter, 1.67 mW/°C above 25°C.
- 2. Derate power dissipation linearly, 2.50 mW/°C above 25°C.
- 3. RMA Flux is recommended.
- 4. Methanol or isopropyl alcohols are recommended as cleaning agents.
- 5. Soldering iron tip 1.6mm from housing.
- 6. As long as leads are not under stress or spring tension.

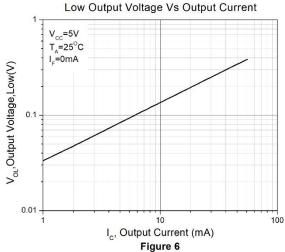


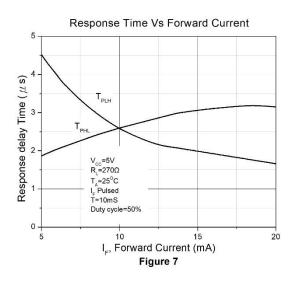

Electro-Optical Characteristics TA = 25°C (unless otherwise specified)

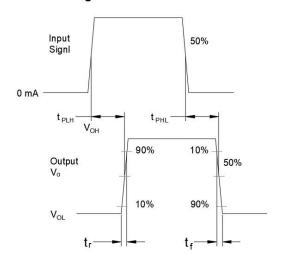

Symbol	Parameters	Test Conditions	Min	Тур	Max	Units
\/	Recommended Operating		4.5	-	5.5	V
Vcc	Supply Voltage	-				
Emitter						•
V _F	Forward Voltage	I _F =20mA	-	_	1.7	V
I _R	Reverse Leakage Current	V _R =5V	-	-	10	μΑ
Coupled						
Icc	Operating Supply Current	I _F =15mA, or 0mA, V _{CC} =5V	-	_	5	mA
Vol	Low Level Output Voltage	I _F =0mA , V_{CC} =5V, R_L =360 Ω	-	-	0.4	V
Іон	High Level Output Current	I _F =15mA, or V _{CC} =5V, V _{OH} =30V	-	-	100	μA
IF ⁽⁺⁾	Turn on Threshold Current	V_{CC} =5V, R_L =360 Ω	-	-	15	mA
IF ⁽⁻⁾	Turn off Threshold Current	Vcc=5V, R _L =360Ω	0.50	-	-	mA
_F (+)/ _F (-)	Hysteresis Ratio	-	-	1.2	-	-
P _{PLH} , P _{PHL} ,	Propagation Delay	Vcc=5V, RL=360Ω	-	5	-	μs
Tr	Rise Time		-	70	-	μs
Tf	Fall Time	V _{CC} =5V, R _L =360Ω		70		μs

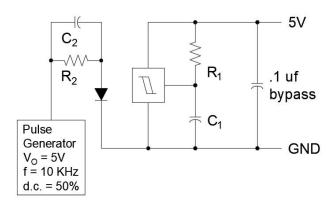

Typical Characteristic Curves





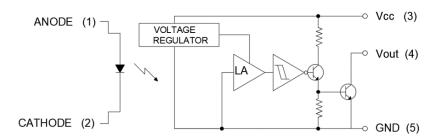

Page 4



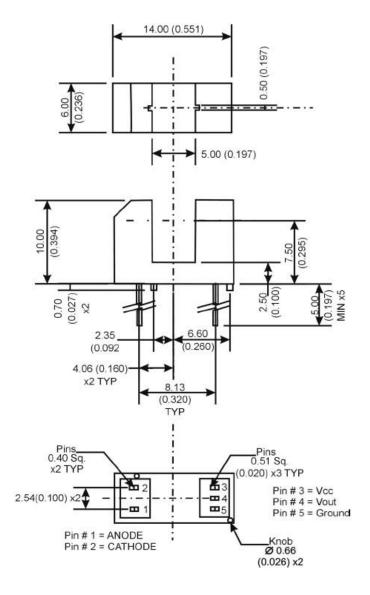


Typical Performance Characteristics (Continued)

Switching Test Curve for Buffers



Switching Speed Test Circuit


 $\begin{array}{lll} R_1 = 270 \; \Omega & C_1 = 15 \; pf & C_1 \, and \, C_2 \, include \, probe \, and \\ R_2 = 360 \; \Omega & C_2 = 20 \; pf & stray \, wire \, capacitance \end{array}$

Circuit schematics

Package Dimension All dimensions are in mm, unless otherwise stated.

Notes:

- 1 : Dimensions for all drawings are in millimeters(inches).
- 2 : Tolerance of +/- 0.25mm (0.010) on all non nominal dimensions unless otherwise specified.

Label Form Specification

Part no: CTM Production Number

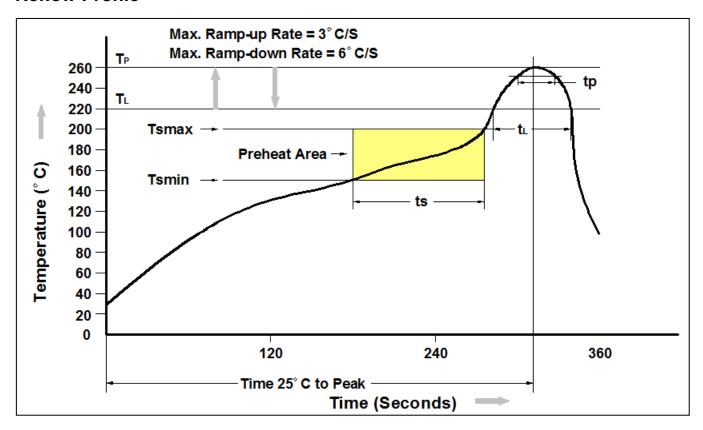
Serial no: Production Number

Lot no: Lot number

Q'ty: Packing Quantity

Date Code: Manufacture Date

Bin Code: Ic Ranks


MADE IN CHINA: Production Place

Storage Condition

- 1. Do not open moisture proof bag before the products are ready to use.
- 2. The moisture barrier bag should be stored at 40°C and 90%R.H. max. before opening. Shelf life of non-opened bag is 12 months after the bag sealing date.
- 3. After opening the moisture barrier bag floor life is 72h at 30°C/60%RH. max. Unused LEDs should be resealed into moisture barrier bag. (Refer to J-STD-020 Standard)
- 4. If the moisture absorbent material has faded away or the LEDs have exceeded the storage time, baking treatment should be performed using the J-STD-033 Standard conditions.

Reflow Profile

Profile Feature	Pb-Free Assembly Profile
Temperature Min. (Tsmin)	150°C
Temperature Max. (Tsmax)	200°C
Time (ts) from (Tsmin to Tsmax)	60-120 seconds
Ramp-up Rate (t _L to t _P)	3°C/second max.
Liquidous Temperature (T _L)	217°C
Time (t _L) Maintained Above (T _L)	60 – 150 seconds
Peak Body Package Temperature	260°C +0°C / -5°C
Time (t _P) within 5°C of 260°C	30 seconds
Ramp-down Rate (T _P to T _L)	6°C/second max
Time 25°C to Peak Temperature	8 minutes max.

DISCLAIMER

CT MICRO RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. CT MICRO DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

CT MICRO ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT EXPRESS WRITTEN APPROVAL OF CT MICRO INTERNATIONAL CORPORATION.

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instruction for use provided in the labelling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.