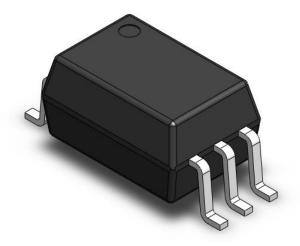


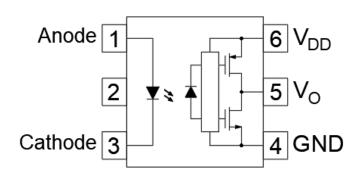
Features

- Peak Output Current : $IOP = \pm 1.0A$ (max)
- Threshold Input Current: IFLH = 5 mA (max)
- Common mode transient immunity : ±25kV/µs (min)
- **RoHS and REACH Compliance**
- MSL class 1
- **Regulatory Approvals**
 - UL UL1577 (E364000) \checkmark
 - ✓ VDE - EN60747-5-5(VDE0884-5)
 - CQC GB4943.1, GB8898(14001104999) ✓
 - IEC62368 (FI/41119) 1

Description


The CTS314 consists of a GaAsP LED optically coupled to an integrated circuit with a power output stage. This optocoupler is ideally suited for driving power IGBTs and MOSFETs used in motor control inverter applications. The high operating voltage range of the output stage provides the drive voltages required by gate controlled devices.

Applications


- Isolated IGBT/Power MOSFET gate drive
- Industrial Inverter
- AC brushless and DC motor drives
- Induction Heating

Package Outline

Note: Different lead forming options available. See package dimension.

Truth Table

LED	V _{cc} -V _{EE} Positive Going	V _{cc} -V _{EE} Negative Going	Output
Off	0 to 30 V	0 to 30V	Low
On	0 to 11.0V	0 to 9.5V	Low
On	11.0 to 13.5V	9.5 to 12V	Transition
On	13.5 to 30V	12 to 30V	High

Absolute Maximum Ratings $T_A = 25^{\circ}C$, unless otherwise specified

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameters	Ratings	Units	Notes
Viso	Isolation voltage (AC, 1 minute, 40 ~ 60% R.H.)	5000	V _{RMS}	1
Topr	Operating temperature	-40 ~ +100	0C	
Tstg	Storage temperature	-55 ~ +125	0C	
Tsol	Soldering temperature (For 10 seconds)	260	0C	2
Ρτ	Total Power Dissipation	300	mW	
Emitter		-		
lF	Forward current	25	mA	
IFP	Peak forward current (50% duty, 1ms P.W)	1	А	
VR	Reverse voltage	5	V	
Detector			·	
Po	Output Power dissipation	250	mW	
VO(PEAK)	Peak Output Voltage	35	V	3
Іорн	Output High Peak Current	1	А	4
IOPL	Output Low Peak Current	1	А	4
Vcc	Supply voltage	35	V	

Notes

1. AC for 1 minute, $RH = 40 \sim 60\%$.

- 2. For 10 second peak
- 3. The $V_{O(\text{PEAK})}$ voltage CAN NOT BE high than $V_{\text{CC}}.$
- 4. The I₀ maximum pulse width = 10 us, maximum duty cycle = 0.2%.

Electrical Characteristics

Over recommended operating conditions TA = -40 to 100 °C. Typical values are measured at $V_{CC}=30V$, $V_{EE}=$ GND, $T_A = 25^{\circ}C$ (unless

otherwise stated)

Emitter Characteristics

Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
VF	Forward Voltage	I _F = 10mA	-	1.4	1.8	V	
VR	Reverse Voltage	I _R = 10μA	5.0	-	-	V	
$\Delta V_F / \Delta T_A$	Temperature coefficient of forward voltage	I _F = 10mA	-	-1.7	-	mV/°C	

Detector Characteristics

Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
lcc∟	Logic Low Supply Current	IF= 0mA	-	1.5	3	~ ^	
Іссн	Logic High Supply Current	IF= 10mA	-	1.5	3	mA	

Transfer Characteristics

Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
Vон	High Level Output Voltage	I _F = 10mA, I _O = -100mA	Vcc-0.6	Vcc-0.4	-	V	
Vol	Low Level Output Voltage	I _F = 0mA, I _O = 100mA	-	0.25	0.4	V	
	High Lovel Output Current	Vo= Vcc-2V	-	-	-0.3		1
IOPH	High Level Output Current	Vo= Vcc-4V	-	-	-0.9	A	1
1	Low Level Output Current	V _O = V _{EE} +2V	0.3	-	-	A	1
OPL		Vo= VEE+4V	0.9	-	-		1
IFLH	Input Threshold Current	I ₀ = 0mA, V ₀ > 5V	-	1.4	5.0	mA	
Vfhl	Input Threshold Voltage	I ₀ = 0mA, V ₀ < 5V	0.8	-	-	V	
VUVLO+	Under Voltage Lockout	IO= 10mA, VO> 5V	6.9	7.8	8.7	V	
Vuvlo-	Threshold	IO= 10mA, VO< 5V	5.9	6.7	7.5	V	
UVLO _{HYS}	Under Voltage Lockout Hysteresis		-	1.1	-	V	

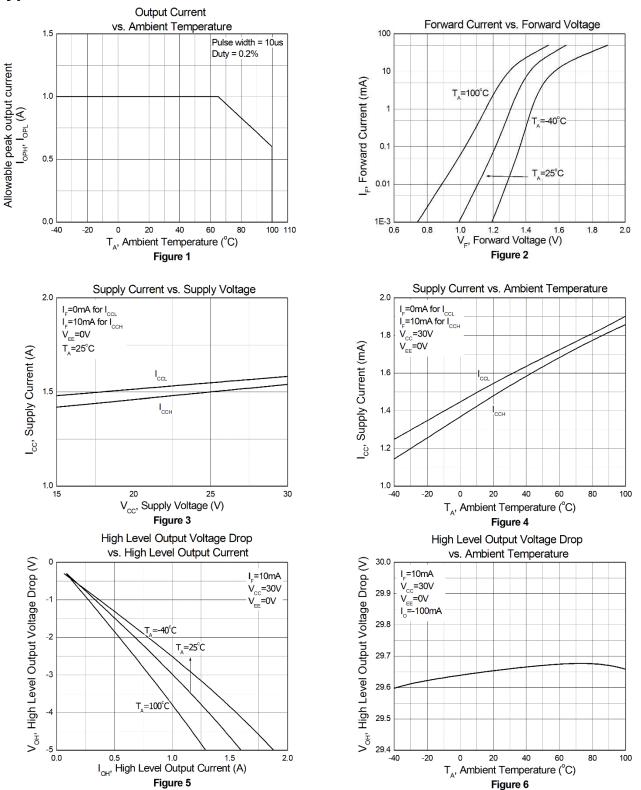
Notes

1. The I₀ maximum pulse width = 10 us, maximum duty cycle = 0.2%.

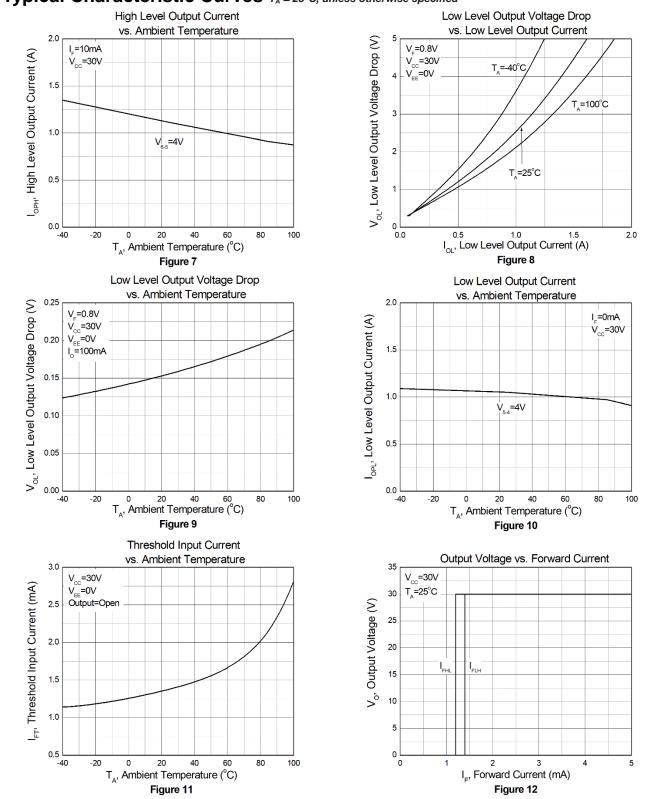
Electrical Characteristics

Over recommended operating conditions TA = -40 to 100 °C. Typical values are measured at $V_{CC}=30V$, $V_{EE}=$ GND, $T_A = 25^{\circ}C$ (unless

otherwise stated)

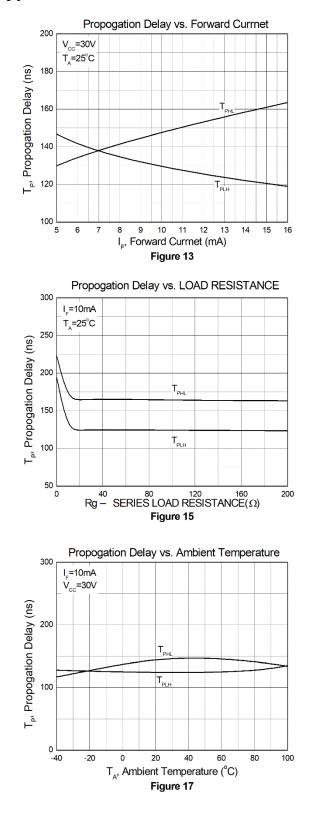

Switching Characteristics

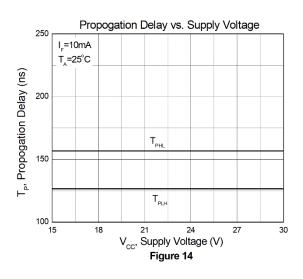
Symbol	Parameters	Test C	onditions	Min	Тур	Max	Units	Notes
TPHL	High to Low Propagation Delay			100	160	300	ns	
TPLH	Low to High Propagation Delay			100	130	300	ns	
PWD	Pulse Width Distortion	Rg = 47Ω, Cg	= 3 nF,	-	30	-	ns	
	Propagation Delay Difference	f = 10 kHz, Du	ity = 50%,					
PDD	Between Any Two Parts or	I _F = 10mA,		-100	-	100	ns	
	Channels	Vcc = 30V						
tr	Rise Time			-	20	100	ns	
t _f	Fall Time			-	20	100	ns	
[СМн]	Common Mode Transient High	V _{CC} = 30V, T _A = 25 ^o C,	IF= 7.5mA	25	-	-	kV/μs	
CM∟	Common Mode Transient Low	V _{CM} = 1.5kV	I _F = 0mA	25	-	-	kV/μs	

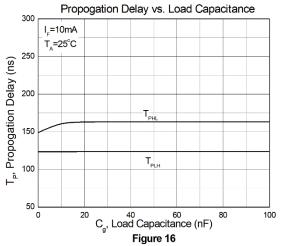


CTS314

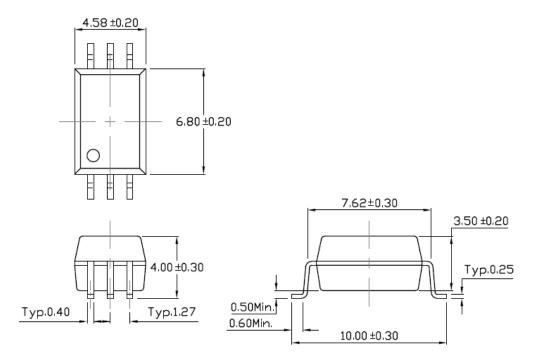
Typical Characteristic Curves $T_A = 25^{\circ}C$, unless otherwise specified

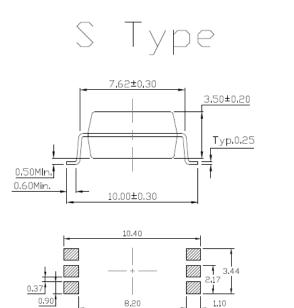


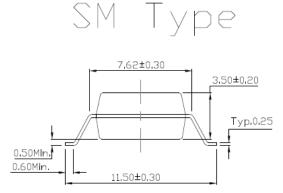



Typical Characteristic Curves $T_A = 25^{\circ}C$, unless otherwise specified

Typical Characteristic Curves $T_A = 25^{\circ}C$, unless otherwise specified






Package Dimension Dimensions in mm unless otherwise stated

Surface Mount Lead Forming

Forming Option Dimensions in mm unless otherwise stated

CTS314

1.0A MOSFET/IGBT Gate Driver Optocoupler

: Denotes "CT Micro"

: One Digit Year Code

: Manufacturing Code

: VDE Safety Mark Option (Blank or V)

: Part Number

WW : Two Digit Work Week

Note: CT

314

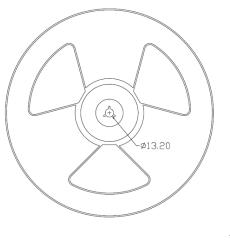
V

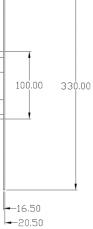
Y

Κ

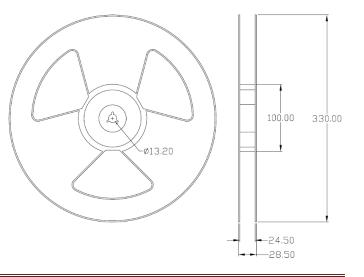
Marking Information

Ordering Information


CTS314(V)(Y)(Z)

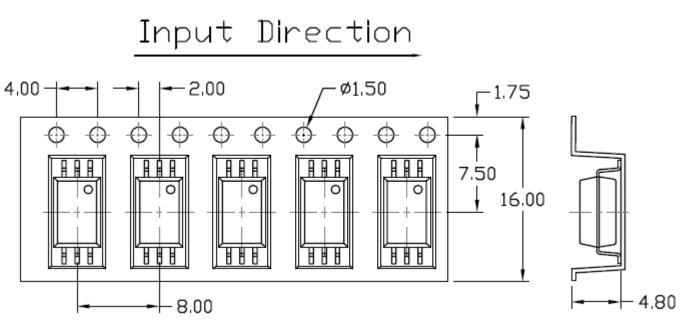

- CT = Denotes "CT Micro"
- S314 = Part Number
 - V = VDE Safety Mark Option (Blank or V)
 - Y = Lead Form Option (S or SM)
- Z = Tape and Reel Option (T1 or T2)

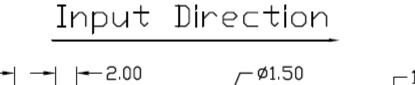
Ζ =	z = rape and Reel Option (11 of 12)						
Option	Description	Quantity					
T1	Surface Mount Lead Forming with Option 1 Taping	1500 Units/Reel					
T2	Surface Mount Lead Forming with Option 2 Taping	1500 Units/Reel					
M(T1)	Surface Mount (Gullwing) Lead Forming with Option 1 Taping	1500 Units/Reel					
M(T2)	Surface Mount (Gullwing) Lead Forming with Option 2 Taping	1500 Units/Reel					

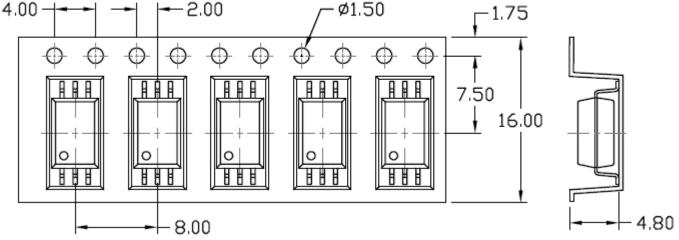

Reel Dimension All dimensions are in mm, unless otherwise stated

Option S(T1/T2)

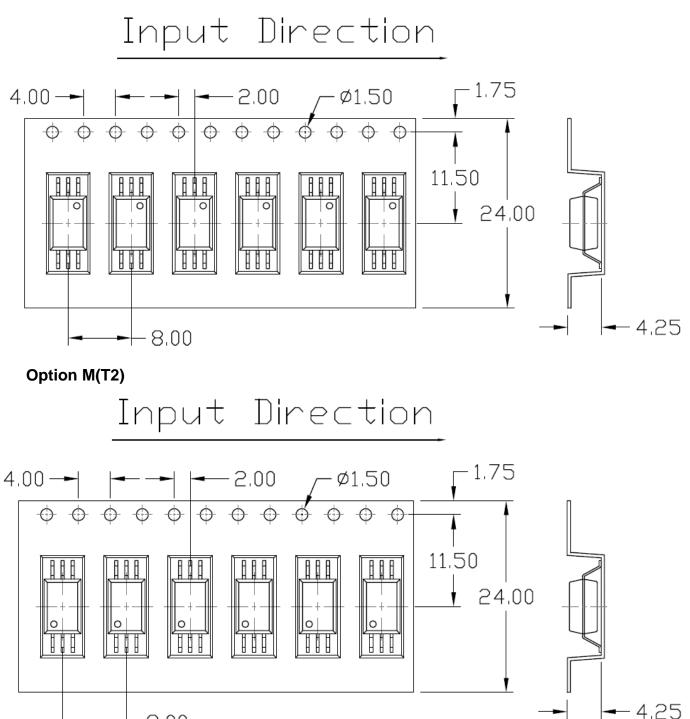
Option M(T1/T2)




n_____

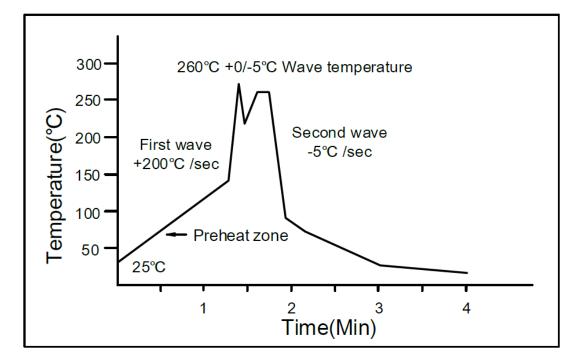

Carrier Tape Specifications Dimensions in mm unless otherwise stated

Option S(T1)


Option S(T2)

Option M(T1)

- 8,00


Solderability spec (Follow the JEDEC standard JESD22-B102)

Reflow Soldering: Immersed surface, other than the end of pin as cut-surface, must be covered by solder.

Solder-Bath: More than 95% of the electrode must be covered with solder.

Wave soldering (Follow the JEDEC standard JESD22-A111)

One time soldering is recommended within the condition of temperature. Temperature: 260+0/-5°C. Time: 10 sec. Preheat temperature: 25 to 140°C. Preheat time: 30 to 80 sec.



Iron soldering (Follow the standard MIL-STD 202G, Method 210F)

Allow single lead soldering in every single process. One time soldering is recommended. Temperature: 350±10°C Time: 5 sec max.

Reflow Profile (Follow the JEDEC standard J-STD-020)

Profile Feature	Pb-Free Assembly Profile
Temperature Min. (Tsmin)	150°C
Temperature Max. (Tsmax)	200°C
Time (ts) from (Tsmin to Tsmax)	60-120 seconds
Ramp-up Rate (t∟ to t _P)	3°C/second max.
Liquidous Temperature (TL)	217°C
Time (t _L) Maintained Above (T _L)	60 – 150 seconds
Peak Body Package Temperature	260°C +0°C / -5°C
Time (t _P) within 5°C of 260°C	30 seconds
Ramp-down Rate $(T_P \text{ to } T_L)$	6°C/second max
Time 25°C to Peak Temperature	8 minutes max.

DISCLAIMER

CT MICRO RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. CT MICRO DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

DISCOLORATION MIGHT OCCUR ON THE PACKAGE SURFACE AFTER SOLDERING, REFLOW OR LONG TERM USE. THIS DOES NOT IMPACT THE PRODUCT PERFORMANCE NOR THE PRODUCT RELIABILITY.

CT MICRO ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT EXPRESS WRITTEN APPROVAL OF CT MICRO INTERNATIONAL CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instruction for use provided in the labelling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.