5 Pin Mini-Flat DMC-Isolator® # 1 Mbit/s High Speed Transistor Coupler #### **Features** - High speed: 1 Mbit/s - High isolation voltage between input and output (Viso=3750 Vrms) - Guaranteed performance from 0°C to 70°C - RoHS and REACH compliance - Halogen Free compliance - MSL class 1 - Regulatory Approvals - UL UL1577 (E364000) - VDE EN60747-5-5(VDE0884-5) - CQC GB4943.1, 2022 (14001105803) - IEC62368 (FI/41119) #### **Description** The CTM452 and CTM453 devices each consist of an infrared emitting diode, optically coupled to a high speed photo detector transistor. A separate connection for the photodiode bias and Wide operating temperature range of -55°C to 125°C output-transistor collector increase the speed by several orders of magnitude over conventional phototransistor couplers by reducing the base-collector capacitance of the input transistor. The devices are packaged in a Mini-Flat package. ## **Applications** - Line receivers - Telecommunication equipment - Feedback loop in switch-mode power supplies - Home appliances - High speed logic ground isolation # **Package Outline** ### **Schematic** ## 5 Pin Mini-Flat DMC-Isolator® # 1 Mbit/s High Speed Transistor Coupler ## Absolute Maximum Ratings $T_A = 25^{\circ}C$, unless otherwise specified Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. | Symbol | Parameters | Ratings | Units | Notes | |-----------------------|---|------------|------------------|-------| | Viso | Isolation voltage (AC, 1 minute, 40 ~ 60% R.H.) | 3750 | V _{RMS} | | | Topr | Operating temperature | -55 ~ +125 | °C | | | Тѕтс | Storage temperature | -55 ~ +150 | °C | | | Tsol | Soldering temperature (For 10 seconds) | 260 | °C | | | Emitter | | | · | | | l _F | Forward current | 25 | mA | | | I _{FP} | Peak forward current (50% duty, 1ms P.W) | 50 | mA | | | I _{F(TRANS)} | Peak transient current (≤1µs P.W,300pps) | 1 | А | | | V _R | Reverse voltage | 5 | V | | | P _D | Power dissipation | 45 | mW | | | Detector | | | · | | | P _D | Power dissipation | 100 | mW | | | I _{O(AVG)} | Average Output current | 8 | mA | | | I _O (Peak) | Peak Output current | 16 | mA | | | Vo | Output voltage | -0.5 to 20 | V | | | Vcc | Supply voltage | -0.5 to 30 | V | | # CTM452, CTM453 5 Pin Mini-Flat DMC-Isolator® # 1 Mbit/s High Speed Transistor Coupler #### **Electrical Characteristics** $T_A = 0.70$ °C (unless otherwise specified). Typical values are measured at $T_A = 25$ °C and $V_{cc} = 5V$ #### **Emitter Characteristics** | Symbol | Parameters | Test Conditions | Min | Тур | Max | Units | Notes | |----------------------------------|--|-----------------|-----|------|-----|-------|-------| | VF | Forward voltage | IF = 16mA | - | 1.6 | 1.8 | V | | | VR | Reverse Voltage | IR = 10μA | 5.0 | - | - | V | | | ΔV _F /ΔT _A | Temperature coefficient of forward voltage | IF =16mA | - | -1.6 | - | mV/°C | | #### **Detector Characteristics** | Symbol | Parameters | Test Conditions | Min | Тур | Мах | Units | Notes | |--------|--|---|--------|-------|-----------|-------|-------| | | Logic High Output Current | I _F =0mA, V _O =V _{CC} =5.5V, | | 0.001 | 0.5 | | | | | | T _A =25°C | - | | | | | | | | I _F =0mA, V _O =V _{CC} =3.3V, | | 0.001 | 0.4 | μA | | | Іон | | T _A =25°C | | | | | | | | | I _F =0mA, V _O =V _{CC} =15V, | - 0.01 | 1 | | | | | | | T _A =25°C | | 0.01 | ' | | | | | | I _F =0mA, V _O =V _{CC} =15V | - | - | 50 | | | | ICCL | Logic Low Supply Current | I _F =16mA, V _O =Open, | | - 120 | - 120 200 | | | | ICCL | Logic Low Supply Current | Vcc=15V | • | | 200 | μA | | | | $\begin{tabular}{ll} I_{F}=0mA,\ V_{O}=Open,\ V_{CC}=15V,\\ T_{A}=25^{\circ}C \\ \hline \\ IF=0mA,\ VO=Open,\\ \hline \end{tabular}$ | | 0.01 | 1 | | | | | loou | | T _A =25°C | • | 0.01 | ' | ۸ | | | ICCH | | IF=0mA, VO=Open, | | - | | μΑ | | | | | Vcc =15V | - | | 2 | | | # 5 Pin Mini-Flat DMC-Isolator® # 1 Mbit/s High Speed Transistor Coupler **Electrical Characteristics** $T_A = 0 - 70^{\circ}\text{C}$ (unless otherwise specified). Typical values are measured at $T_A = 25^{\circ}\text{C}$ and $V_{\text{CC}} = 5V$ #### **Transfer Characteristics** | Symbol | Parameters | Test Conditions | Min | Тур | Max | Units | Notes | |--------|--------------------------|---|-----|-----|-----|-------|-------| | | | I _F =16mA, V _O =0.4V, | 20 | - | 50 | | | | | | Vcc=4.5V, T _A =25°C | | | | | | | | | I _F =16mA, V _O =0.5V, | 15 | - | - | - % | | | CTD | | Vcc=4.5V | | | | | | | CTR | Current Transfer Ratio | I _F =16mA, V _O =0.4V, | 40 | | 54 | | | | | | Vcc=3.3V, T _A =25°C | 18 | | 51 | | | | | | I _F =16mA, V _O =0.5V, | 13 | | | | | | | | Vcc=3.3V | | | | | | | | | I _F =16mA, I _O =3mA, V _{CC} =4.5V, | | | 0.4 | - v | | | | | T _A =25°C | - | - | 0.4 | | | | | | I _F =16mA, I _O =3mA, V _{CC} =3.3V, | | | 0.4 | | | | W | Logic Low Output Voltage | T _A =25°C | | | 0.4 | | | | VoL | | I _F =16mA, I _O =2.4mA, | - | - | 0.5 | V | | | | | Vcc=4.5V | | | | | | | | | I _F =16mA, I _O =2.4mA, | | | 0.5 | | | | | | V _{CC} =3.3V | | | | | | # 5 Pin Mini-Flat DMC-Isolator® # 1 Mbit/s High Speed Transistor Coupler **Electrical Characteristics** $T_A = 0 - 70^{\circ}\text{C}$ (unless otherwise specified). Typical values are measured at $T_A = 25^{\circ}\text{C}$ and $V_{\text{CC}} = 5V$ #### **Switching Characteristics** | Symbol | Parameters | | Test Conditions | Min | Тур | Мах | Units | Notes | |---------|--|--------------------|--|--------|------|-----|--------------|-------| | | Propagation Delay Time Logic High to Logic Low | | $I_F=16mA$, $R_L=1.9K\Omega$, | - | 0.35 | 0.8 | μs | | | | | | T _A =25°C | | | | | | | | | | I_F =16mA, R_L =1.9K Ω | - | ı | 1.0 | | | | T_PHL | | | I _F =16mA, V _{CC} =3.3V | | 0.4 | 1 | | | | | | | R _L =1.9KΩ, T _A =25°C | | | | | | | | | | I _F =16mA, V _{CC} =3.3V | | 1 | 1 1 | | | | | | | R _L =1.9KΩ | | | 1.4 | | | | | Propagation Delay Time Logic Low to Logic High | | $I_F=16mA, R_L=1.9K\Omega,$ | | 0.3 | 0.8 | | | | | | | T _A =25°C | _ | | | -
-
µs | | | | | | I _F =16mA, R _L =1.9KΩ | - | - | 1.0 | | | | T_PLH | | | I _F =16mA, V _{CC} =3.3V | | | 1.5 | | | | | | | R _L =1.9KΩ, T _A =25°C | | | 1.5 | | | | | | | I _F =16mA, V _{CC} =3.3V | | 2.0 | 2.0 | | | | | | | R _L =1.9KΩ | | | 2.0 | | | | | Common Mode | CTM452 | I _F = 0mA , V _{CM} =10Vp-p, | 5,000 | _ | - | | | | СМн | Transient Immunity at | C1101452 | R _L =1.9KΩ, T _A =25°C | 3,000 | _ | | V/µs | | | CIVIH | Logic High | • | I _F = 0mA , V _{CM} =1500Vp-p, | 15,000 | _ | | ν/μδ | | | | Logic Flight | OTWHOO | R _L =1.9KΩ, T _A =25°C | 10,000 | | | | | | CML | Common Mode Transient Immunity at Logic Low | CTM452
t CTM453 | $I_F = 16\text{mA}$, $V_{CM}=10\text{Vp-p}$, | 5,000 | _ | - | | | | | | | R _L =1.9KΩ, T _A =25°C | | | | V/µs | | | OIVIL | | | I _F = 16mA , V _{CM} =1500Vp-p, | 15,000 | - | | ν/μ3 | | | | 209.0 2011 | 31W-33 | R _L =1.9KΩ, T _A =25°C | | | | | | ### 5 Pin Mini-Flat DMC-Isolator® # 1 Mbit/s High Speed Transistor Coupler ## Typical Characteristic Curves $T_A = 25$ °C, unless otherwise specified ## 5 Pin Mini-Flat DMC-Isolator® # 1 Mbit/s High Speed Transistor Coupler ## Typical Characteristic Curves $T_A = 25$ °C, unless otherwise specified # 1 Mbit/s High Speed Transistor Coupler #### **Test Circuits** **Figure 11: Switching Time Test Circuits** # 1 Mbit/s High Speed Transistor Coupler #### **Test Circuits** Figure 12: CMR Test Circuits #### Package Dimension Dimensions in mm unless otherwise stated # **Marking Information** #### Note: CT: Denotes "CT Micro" M452: Product Number V : VDE Safety Mark OptionY : One Digit Year CodeWW : Two Digit Work WeekK : Manufacturing Code # 1 Mbit/s High Speed Transistor Coupler ## **Ordering Information** CTM45X (V)(Z) CT = Denotes "CT Micro" M45X = Product Number (X= 2, or 3) V = VDE Safety Mark Option (Blank or V) Z = Tape and Reel Option (T1 or T2) | Option | Description | Quantity | |--------|---|-----------------| | T1 | Surface Mount Lead Forming – With Option 1 Tapping | 3000 Units/Reel | | T2 | T2 Surface Mount Lead Forming – With Option 2 Tapping | | #### Reel Dimension All dimensions are in mm, unless otherwise stated #### Option T1/T2 #### Carrier Tape Specifications Dimensions in mm unless otherwise stated -8.00 ## **Option T1** # #### **Option T2** 2.48 # 1 Mbit/s High Speed Transistor Coupler #### Solderability spec (Follow the JEDEC standard JESD22-B102) Reflow Soldering: Immersed surface, other than the end of pin as cut-surface, must be covered by solder. Solder-Bath: More than 95% of the electrode must be covered with solder. #### **Wave soldering (Follow the JEDEC standard JESD22-A111)** One time soldering is recommended within the condition of temperature. Temperature: 260+0/-5°C. Time: 10 sec. Preheat temperature: 25 to 140°C. Preheat time: 30 to 80 sec. # Iron soldering (Follow the standard MIL-STD 202G, Method 210F) Allow single lead soldering in every single process. One time soldering is recommended. Temperature: 350±10°C Time: 5 sec max. # 1 Mbit/s High Speed Transistor Coupler ## Reflow Profile (Follow the JEDEC standard J-STD-020) | Profile Feature | Pb-Free Assembly Profile | |---|--------------------------| | Temperature Min. (Tsmin) | 150°C | | Temperature Max. (Tsmax) | 200°C | | Time (ts) from (Tsmin to Tsmax) | 60-120 seconds | | Ramp-up Rate (t∟ to t⊳) | 3°C/second max. | | Liquidous Temperature (T _L) | 217°C | | Time (t _L) Maintained Above (T _L) | 60 – 150 seconds | | Peak Body Package Temperature | 260°C +0°C / -5°C | | Time (t _P) within 5°C of 260°C | 30 seconds | | Ramp-down Rate (T _P to T _L) | 6°C/second max | | Time 25°C to Peak Temperature | 8 minutes max. | ### 5 Pin Mini-Flat DMC-Isolator® # 1 Mbit/s High Speed Transistor Coupler #### **DISCLAIMER** DMC-Isolator® IS A TRADEMARK OF CT MICRO INTERNATIONAL CORPORATION AND/OR ITS SUBSIDIARIES. CT MICRO OWNS THE RIGHTS TO A NUMBER OF PATENTS, TRADEMARKS, COPYRIGHTS AND OTHER INTELLECTUAL PROPERTY. CT MICRO RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. CT MICRO DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN: NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. DISCOLORATION MIGHT OCCUR ON THE PACKAGE SURFACE AFTER SOLDERING, REFLOW OR LONG TERM USE. THIS DOES NOT IMPACT THE PRODUCT PERFORMANCE NOR THE PRODUCT RELIABILITY. CT MICRO ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT EXPRESS WRITTEN APPROVAL OF CT MICRO INTERNATIONAL CORPORATION. - 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instruction for use provided in the labelling, can be reasonably expected to result in significant injury to the user. - A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.