

www.ct-micro.com

High isolation 5000 VRMS

Peak Breakdown Voltage 600V

External Creepage ≥ 7.4mm

Distance Through Isolation ≥ 0.4 mm

Clearance Distance \geq 7.5mm (S/SL Type)

Clearance Distance \geq 8.0mm (M Type)

Halogen Free Compliance (Optional)

UL - UL1577 (E364000)

IEC62368 (FI/41119)

VDE - EN60747-5-5 (40039590)

CQC - GB4943.1, GB8898 (14001104781)

RoHS and REACH Compliance

MSL class 1

 \checkmark 1

✓

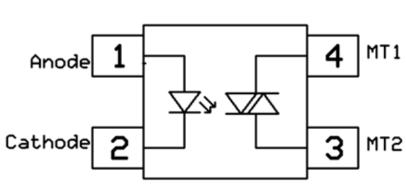
1

Regulatory Approvals

Patented coplanar structure DMC-Isolator®

Operating Temperature range - 55 °C to 100 °C

Features


Description

The CT3051-4L, CT3052-4L, and CT3053-4L series consists of a Random Phase Photo Triac optically coupled to an Infrared-emitting diode in a 4-lead DIP package DMC-Isolator® with different lead forming options.

Applications

- Motor Controls
- Lamp ballasts
- Static AC Power Switch
- Solenoid/ Valve Control

Package Outline

Schematic

Note: Different lead forming options available. See package dimension.

Absolute Maximum Ratings $T_A = 25^{\circ}C$, unless otherwise specified

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

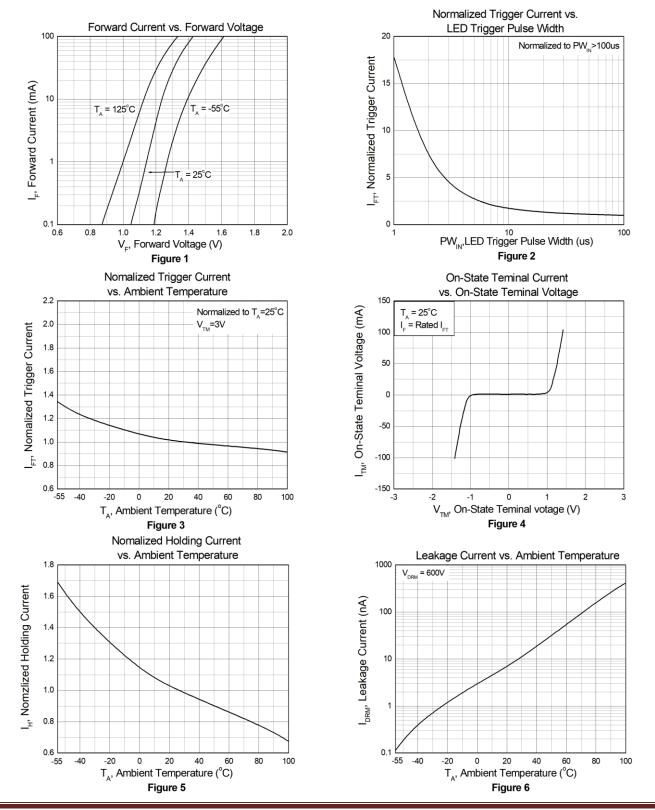
Symbol	Parameters	Ratings	Units	Notes
Viso	Isolation voltage (AC, 1 minute, 40 ~ 60% R.H.)	5000	VRMS	
Topr	Operating temperature	-55 ~ +100	°C	
Тѕтс	Storage temperature	-55 ~ +150	°C	
Tsol	Soldering temperature (For 10 seconds)	260	°C	
TJ	Junction temperature	115	٥C	
Emitter			•	
lF	Forward current	60	mA	
I _{F(TRANS)}	Peak transient current (≤1µs P.W,300pps)	1	А	
VR	Reverse voltage	6	V	
PD	Power dissipation	100	mW	
Detector				
PD	Power dissipation	300	mW	
Vdrm	Off-State Output Terminal Voltage	600	V	
I _{TM}	RMS on-state current	100	mA	
Ітѕм	Peak Repetitive Surge Current	1	А	

Electrical Characteristics $T_A = 25^{\circ}C$, unless otherwise specified

Emitter Characteristics

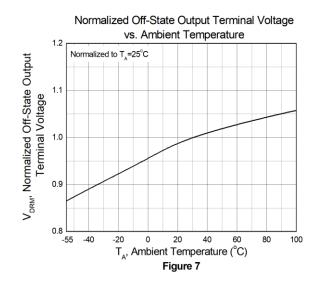
Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
VF	Forward voltage	I⊧=10mA	-	-	1.5	V	
IR	Reverse Current	V _R = 6V	-	-	5	μA	
CIN	Input Capacitance	f= 1MHz	-	45	-	pF	

Detector Characteristics

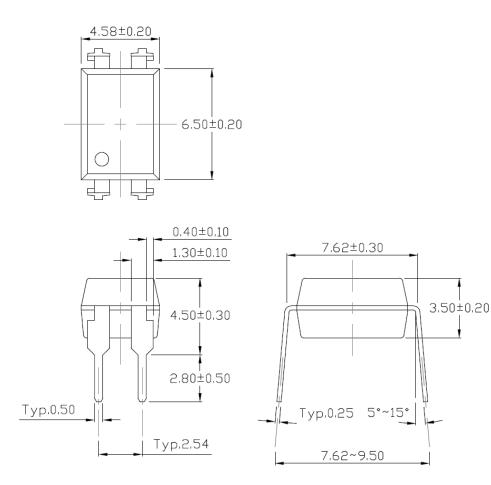

Symbol	Paramete	rs	Test Conditions	Min	Тур	Max	Units	Notes
I _{DRM}	Peak Blocking Currer	nt	$I_F = 0mA$, $V_{DRM} = Rated V_{DRM}$	-	-	100	nA	
Vтм	Peak On-State Voltag	e	IF = Rated IFT, ITM = 100mA	-	-	2.5	V	
	Critical Rate of Rise	CT3051-4L						
dv/dt	off-State Voltage	CT3052-4L	Vpeak = 600V	1000	-	-	V/µs	
		CT3053-4L						

Transfer Characteristics

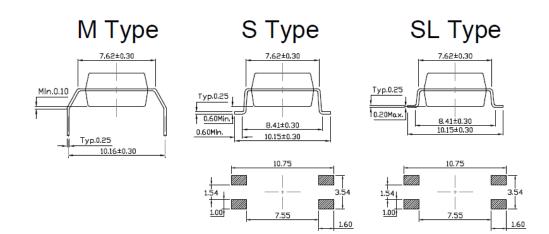
Symbol	Parameters		Test Conditions	Min	Тур	Max	Units	Notes
		CT3051-4L	─ Terminal Voltage = 3V ─ I _{TM} = 100mA	-	-	15		
IFT		CT3052-4L		-	-	10	mA	
Current	Current	CT3053-4L		-	-	5		
	Holding Current		Terminal Voltage from "ON"					
Iн			to "OFF"	-	250	-	μΑ	
			"ON" state I _F =0mA					
Rio	Isolation Resistance		$V_{IO} = 500 V_{DC}, 40 \sim 60\% \text{ R.H.}$	1x10 ¹¹	-	-	Ω	
Сю	Isolation Capacitance		f = 1MHz	-	0.25	-	pF	


Typical Characteristic Curves $T_A = 25^{\circ}C$, unless otherwise specified

© 2023 CT MICRO INTERNATIONAL CORPORATION ALL RIGHTS RESERVED.



Typical Characteristic Curves $T_A = 25^{\circ}C$, unless otherwise specified (Continued)



Package Dimension Dimensions in mm unless otherwise stated

Forming Option

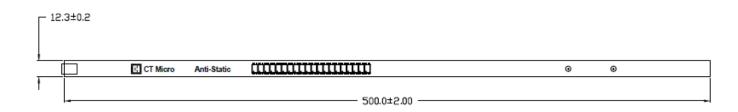
Marking Information

Note:

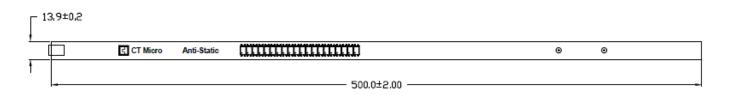
- CT : Denotes "CT Micro"
- 3051 : Part Number
- V : VDE Safety Mark Option (Blank or V)
- Y : One Digit Year Code
- WW : Two Digit Work Week
- K : Manufacturing Code

Ordering Information

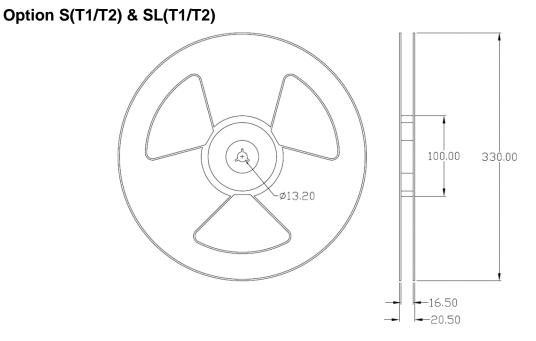
CT305X(V)(Y)(Z) -4L-G


- CT = Denotes "CT Micro"
- 305X = Part Number
- Y = Lead Form Option (S, SL, M or Blank)
- Z = Tape and Reel Option (T1 or T2)
- 4L = 4-Lead DIP Package
- G = Material Option (G: Halogen Free, Blank: Non-Halogen Free)

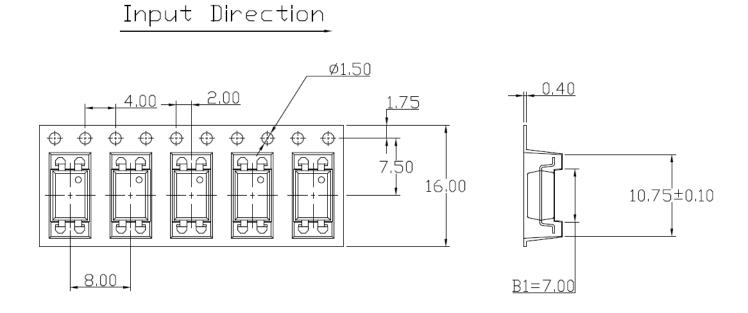
Option	Description	Quantity
None	Standard 4 Pin DIP	100 Units/Tube
М	Gullwing (400mil) Lead Forming	100 Units/Tube
S(T1)	Surface Mount Lead Forming – With Option 1 Taping	1500 Units/Reel
S(T2)	Surface Mount Lead Forming – With Option 2 Taping	1500 Units/Reel
SL(T1)	Surface Mount (Low Profile) Lead Forming- With Option 1 Taping	1500 Units/Reel
SL(T2)	Surface Mount (Low Profile) Lead Forming – With Option 2 Taping	1500 Units/Reel

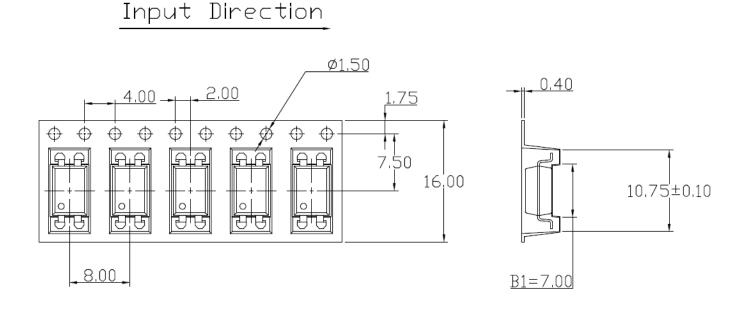


Carrier Specifications Dimensions in mm unless otherwise stated


Tube Option Standard DIP

Tube Option M Type


Reel Dimension All dimensions are in mm, unless otherwise stated

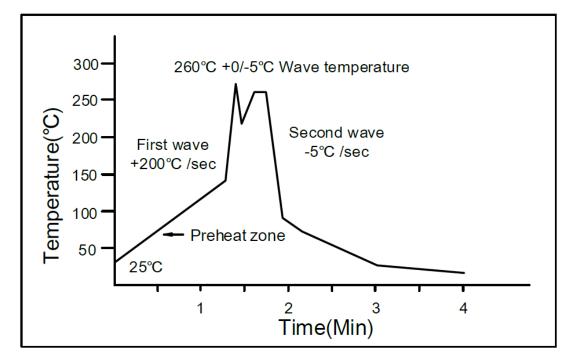


Carrier Tape Specifications Dimensions in mm unless otherwise stated

Option S(T1) & SL(T1)

Option S(T2) & SL(T2)

Phototriac Optocoupler


Solderability spec (Follow the JEDEC standard JESD22-B102)

Reflow Soldering: Immersed surface, other than the end of pin as cut-surface, must be covered by solder.

Solder-Bath: More than 95% of the electrode must be covered with solder.

Wave soldering (Follow the JEDEC standard JESD22-A111)

One time soldering is recommended within the condition of temperature. Temperature: 260+0/-5°C. Time: 10 sec. Preheat temperature: 25 to 140°C. Preheat time: 30 to 80 sec.

Iron soldering (Follow the standard MIL-STD 202G, Method 210F)

Allow single lead soldering in every single process. One time soldering is recommended. Temperature: 350±10°C Time: 5 sec max.

CT3051-4L, CT3052-4L, CT3053-4L 600V Random Phase 4-Pin DMC-Isolator®

Phototriac Optocoupler

Max. Ramp-up Rate = 3° C/S Max. Ramp-down Rate = 6° C/S ТР 260 tp 240 · Tι 220 200 -Tsmax -+ t∟ 180 -Preheat Area ---Temperature (° C) 160 -Tsmin 140 ts 120 -100 -80 -60 -40 -20 -0 120 240 360 Time 25° C to Peak -Time (Seconds)

Reflow Profile (Follow the JEDEC standard J-STD-020)

Profile Feature	Pb-Free Assembly Profile
Temperature Min. (Tsmin)	150°C
Temperature Max. (Tsmax)	200°C
Time (ts) from (Tsmin to Tsmax)	60-120 seconds
Ramp-up Rate (t∟ to t _P)	3°C/second max.
Liquidous Temperature (TL)	217°C
Time (t _L) Maintained Above (T _L)	60 – 150 seconds
Peak Body Package Temperature	260°C +0°C / -5°C
Time (t _P) within 5°C of 260°C	30 seconds
Ramp-down Rate $(T_P \text{ to } T_L)$	6°C/second max
Time 25°C to Peak Temperature	8 minutes max.

DISCLAIMER

DMC-Isolator[®] IS A TRADEMARK OF CT MICRO INTERNATIONAL CORPORATION AND/OR ITS SUBSIDIARIES. CT MICRO OWNS THE RIGHTS TO A NUMBER OF PATENTS, TRADEMARKS, COPYRIGHTS AND OTHER INTELLECTUAL PROPERTY.

CT MICRO RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. CT MICRO DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

DISCOLORATION MIGHT OCCUR ON THE PACKAGE SURFACE AFTER SOLDERING, REFLOW OR LONG TERM USE. THIS DOES NOT IMPACT THE PRODUCT PERFORMANCE NOR THE PRODUCT RELIABILITY.

CT MICRO ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT EXPRESS WRITTEN APPROVAL OF CT MICRO INTERNATIONAL CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instruction for use provided in the labelling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.