CTM600, CTM601, CTM611

10Mbit/s 5-Pin Mini-Flat Logic Gate Optocoupler

Features

- High speed 10MBit/s
- High isolation voltage between input and output (Viso=3750 Vrms)
- Guaranteed CTR performance from 0°C to 70°C
- Wide operating temperature range of -40°C to 85°C
- Green Package
- Regulatory Approvals
 - UL - UL1577 (E364000)
 - VDE - EN60747-5-5(VDE0884-5)
 - CQC – GB4943.1, GB8898
 - IEC60065, IEC60950

Description

The CTM600, CTM601, and CTM611 optocouplers consist of an AlGaAS LED, optically coupled to a very high speed integrated photo-detector logic gate with a strobe able output. The output of the detect IC is a high speed logic gate integrated with a photo detector. The switching parameters are guaranteed over the temperature range of -40°C to +85°C. A maximum input signal of 5mA will provide a minimum output sink current of 13mA (fan out of 8).

Applications

- Line receivers
- Telecommunication equipment
- High speed logic ground isolation
- Feedback loop in switch-mode power supplies
- Home appliances

Package Outline

Schematic

Note: Different bending options available. See package dimension.
Absolute Maximum Rating at 25°C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameters</th>
<th>Ratings</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>VISO</td>
<td>Isolation voltage</td>
<td>3750</td>
<td>V_{RMS}</td>
<td>1</td>
</tr>
<tr>
<td>T_{OPR}</td>
<td>Operating temperature</td>
<td>-40 ~ +85</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>T_{STG}</td>
<td>Storage temperature</td>
<td>-55 ~ +150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>T_{SOL}</td>
<td>Soldering temperature</td>
<td>260</td>
<td>°C</td>
<td>2</td>
</tr>
</tbody>
</table>

Emitter

	Forward current	50	mA	
	Reverse voltage	5	V	
	Power dissipation	100	mW	

Detector

	Power dissipation	85	mW	
	Average Output current	50	mA	
	Supply voltage	7	V	
	Output voltage	7	V	

Notes

1. AC for 1 minute, RH = 40 ~ 60%.
2. For 10 second peak
Electrical Characteristics

$T_A = 0 \text{ - } 70^{\circ}C$ (unless otherwise specified). Typical values are measured at $T_A = 25^{\circ}C$ and $V_{CC}=5V$

Emitter Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameters</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_F</td>
<td>Forward voltage</td>
<td>$I_F = 10mA$</td>
<td></td>
<td>1.4</td>
<td>1.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_R</td>
<td>Reverse Voltage</td>
<td>$I_R = 5\mu A$</td>
<td>5.0</td>
<td>-</td>
<td>-</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>$\Delta V_F/\Delta T_A$</td>
<td>Temperature coefficient of forward voltage</td>
<td>$I_F = 10mA$</td>
<td></td>
<td>-1.6</td>
<td>-</td>
<td>mV/°C</td>
<td></td>
</tr>
</tbody>
</table>

Detector Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameters</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{CCCL}</td>
<td>Logic Low Supply Current</td>
<td>$I_F=10mA, \ V_O=Open, \ V_{CC}=5V$</td>
<td></td>
<td>9</td>
<td>13</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>I_{CCCH}</td>
<td>Logic High Supply Current</td>
<td>$I_F=0mA, \ V_O=Open, \ V_{CC}=5V$</td>
<td></td>
<td>6</td>
<td>9</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>R_{IO}</td>
<td>Isolation Resistance</td>
<td>$V_{IO}= 500V_{dc}$</td>
<td>$5x10^{10}$</td>
<td>-</td>
<td>-</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>C_{IO}</td>
<td>Isolation Capacitance</td>
<td>$f= 1MHz$</td>
<td></td>
<td>0.5</td>
<td>1.2</td>
<td>pF</td>
<td></td>
</tr>
</tbody>
</table>

Transfer Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameters</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{OH}</td>
<td>Logic High Output Current</td>
<td>$I_F=250\mu A, \ V_O= 5.5V,$</td>
<td>2</td>
<td>100</td>
<td>-</td>
<td>uA</td>
<td></td>
</tr>
<tr>
<td>I_{FT}</td>
<td>Input Threshold Current</td>
<td>$V_{CC}=5.5V, \ V_O=0.6V,$</td>
<td>-</td>
<td>3.3</td>
<td>5</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_O=13mA$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OL}</td>
<td>Logic Low Output Voltage</td>
<td>$I_F=5mA, \ I_O=13mA,$</td>
<td>-</td>
<td>0.35</td>
<td>0.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CC}=5.5V,$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Switching Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameters</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{PHL})</td>
<td>Propagation Delay Time Logic High to Logic Low</td>
<td>(C_L=15,\text{pF}, R_L=350,\Omega)</td>
<td>-</td>
<td>40</td>
<td>75</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>(T_{PLH})</td>
<td>Propagation Delay Time Logic Low to Logic High</td>
<td>(I_F=7.5,\text{mA}, V_{OH}=2.0,\text{V}, R_L=350,\Omega, T_A=25^\circ\text{C}, V_{CM}=10,\text{Vp-p})</td>
<td>5000</td>
<td>-</td>
<td>-</td>
<td>V/\mu\text{s}</td>
<td></td>
</tr>
<tr>
<td>(T_{PLH})</td>
<td>Propagation Delay Time Logic Low to Logic High</td>
<td>(I_F=7.5,\text{mA}, V_{OH}=2.0,\text{V}, R_L=350,\Omega, T_A=25^\circ\text{C}, V_{CM}=50,\text{Vp-p})</td>
<td>20000</td>
<td>-</td>
<td>-</td>
<td>V/\mu\text{s}</td>
<td></td>
</tr>
<tr>
<td>(T_{PLH})</td>
<td>Propagation Delay Time Logic Low to Logic High</td>
<td>(I_F=7.5,\text{mA}, V_{OH}=2.0,\text{V}, R_L=350,\Omega, T_A=25^\circ\text{C}, V_{CM}=1000,\text{Vp-p})</td>
<td>20000</td>
<td>-</td>
<td>-</td>
<td>V/\mu\text{s}</td>
<td></td>
</tr>
<tr>
<td>(T_{PLH})</td>
<td>Propagation Delay Time Logic Low to Logic High</td>
<td>(I_F=0,\text{mA}, V_{OL}=0.8,\text{V}, R_L=350,\Omega, T_A=25^\circ\text{C}, V_{CM}=10,\text{Vp-p})</td>
<td>5000</td>
<td>-</td>
<td>-</td>
<td>V/\mu\text{s}</td>
<td></td>
</tr>
<tr>
<td>(T_{PLH})</td>
<td>Propagation Delay Time Logic Low to Logic High</td>
<td>(I_F=0,\text{mA}, V_{OL}=0.8,\text{V}, R_L=350,\Omega, T_A=25^\circ\text{C}, V_{CM}=50,\text{Vp-p})</td>
<td>20000</td>
<td>-</td>
<td>-</td>
<td>V/\mu\text{s}</td>
<td></td>
</tr>
<tr>
<td>(T_{PLH})</td>
<td>Propagation Delay Time Logic Low to Logic High</td>
<td>(I_F=0,\text{mA}, V_{OL}=0.8,\text{V}, R_L=350,\Omega, T_A=25^\circ\text{C}, V_{CM}=1000,\text{Vp-p})</td>
<td>20000</td>
<td>-</td>
<td>-</td>
<td>V/\mu\text{s}</td>
<td></td>
</tr>
</tbody>
</table>
Typical Characteristic Curves

Figure 1
Forward Current vs. Forward Voltage

- $T_a = 70^\circ C$
- $T_a = 85^\circ C$
- $T_a = 90^\circ C$

Figure 2
Input Threshold Current vs. Ambient Temperature

- $V_C = 5V$
- $V_C = 0.6V$

Figure 3
Low Level Output Voltage vs. Ambient Temperature

- $I_{C}=5mA$
- $V_C=5V$
- $I_{IO}=13mA$

Figure 4
Logic High Output Current vs. Ambient Temperature

- $I_{C}=250mA$
- $V_C=5V$

Figure 5
Typical Logic Low Output Supply Current vs. Ambient Temperature

- $I_{C}=10mA$
- $V_C=6V$

Figure 6
Typical Logic High Output Supply Current vs. Ambient Temperature

- $I_{C}=5mA$
- $V_C=6V$
CTM600, CTM601, CTM611

10Mbit/s 5-Pin Mini-Flat Logic Gate Optocoupler

Typical Logic Output Supply Current vs. Output Supply Voltage

Propagation Delay vs. Ambient Temperature

Pulse Width Distortion vs. Ambient Temperature

Rise And Fall Time vs. Ambient Temperature

Pulse Width Distortion vs. Ambient Temperature
Test Circuits

Pulse Generator

\(\text{tr} = 5\text{ns} \)
\(\text{Zo} = 50 \text{ Ohm} \)

Input Monitor

\(47 \)

Figure 11

Figure 12
Test Circuits

Figure 13

CMR Test Circuit

Figure 14
CTM600, CTM601, CTM611
10Mbit/s 5-Pin Mini-Flat Logic Gate Optocoupler

Package Dimension Dimensions in mm unless otherwise stated

Recommended Solder Mask Dimensions in mm unless otherwise stated
CTM600, CTM601, CTM611
10Mbit/s 5-Pin Mini-Flat Logic Gate Optocoupler

Device Marking

CTM600

CT : Denotes “CT Micro”
M600 : Product Number
V : VDE Option
Y : Fiscal Year
WW : Work Week
K : Production Code

Ordering Information

CTM6XX(V)(Z)

X = Part No. (00, 01, or 11)
V = VDE option (V or none)
Z = Tape and reel option (T1 or T2)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Surface Mount Lead Forming – With Option 1 Taping</td>
<td>3000 Units/Reel</td>
</tr>
<tr>
<td>T2</td>
<td>Surface Mount Lead Forming – With Option 2 Taping</td>
<td>3000 Units/Reel</td>
</tr>
</tbody>
</table>
Carrier Tape Specifications *Dimensions in mm unless otherwise stated*

Option T1

Option T2
Reflow Profile

Profile Feature	Pb-Free Assembly Profile
Temperature Min. (Tsmin) | 150°C
Temperature Max. (Tmax) | 200°C
Time (ts) from (Tsmin to Tmax) | 60-120 seconds
Ramp-up Rate (tl to tp) | 3°C/second max.
Liquidous Temperature (Tl) | 217°C
Time (tl) Maintained Above (Tl) | 60 – 150 seconds
Peak Body Package Temperature | 260°C ±0°C / -5°C
Time (tp) within 5°C of 260°C | 30 seconds
Ramp-down Rate (tp to tl) | 6°C/second max
Time 25°C to Peak Temperature | 8 minutes max.
DISCLAIMER

CT MICRO RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. CT MICRO DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

CT MICRO ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT EXPRESS WRITTEN APPROVAL OF CT MICRO INTERNATIONAL CORPORATION.

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instruction for use provided in the labelling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.