CTH214 Series
AC Input 4-Pin Half Pitch Mini-Flat
Phototransistor Optocoupler

Features
- High isolation 3750 VRMS
- CTR flexibility available see order information
- DC input with transistor output
- Operating Temperature range - 55 °C to 110 °C
- Regulatory Approvals
 ■ UL - UL1577 (E364000)
 ■ VDE - EN60747-5-5(VDE0884-5)
 ■ CQC – GB4943.1, GB8898
 ■ IEC60065, IEC60950
- Green Package

Description
The CTH214 series consists of a phototransistor optically coupled to two gallium arsenide Infrared-emitting diode, connected in inverse parallel in a 4-lead half pitch Mini-Flat package.

Applications
- Switch mode power supplies
- Computer peripheral interface
- Microprocessor system interface

Package Outline

Schematic
Absolute Maximum Rating at 25°C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameters</th>
<th>Ratings</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>VISO</td>
<td>Isolation voltage</td>
<td>3750</td>
<td>V RMS</td>
<td></td>
</tr>
<tr>
<td>P_TOT</td>
<td>Total power dissipation</td>
<td>200</td>
<td>mW</td>
<td></td>
</tr>
<tr>
<td>T_OPR</td>
<td>Operating temperature</td>
<td>-55 ~ +110</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>T_STG</td>
<td>Storage temperature</td>
<td>-55 ~ +150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>T_SOL</td>
<td>Soldering temperature</td>
<td>260</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

Emitter

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameters</th>
<th>Ratings</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_F</td>
<td>Forward current</td>
<td>±50</td>
<td>mA</td>
</tr>
<tr>
<td>I_F[TRANS]</td>
<td>Peak transient current (≤1μs P.W,300pps)</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>P_D</td>
<td>Emitter power dissipation</td>
<td>70</td>
<td>mW</td>
</tr>
</tbody>
</table>

Detector

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameters</th>
<th>Ratings</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_D</td>
<td>Detector power dissipation</td>
<td>150</td>
<td>mW</td>
</tr>
<tr>
<td>B_VCEO</td>
<td>Collector-Emitter Breakdown Voltage</td>
<td>80</td>
<td>V</td>
</tr>
<tr>
<td>B_VECO</td>
<td>Emitter-Collector Breakdown Voltage</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>I_C</td>
<td>Collector Current</td>
<td>50</td>
<td>mA</td>
</tr>
</tbody>
</table>
CTH214 Series
AC Input 4-Pin Half Pitch Mini-Flat
Phototransistor Optocoupler

Electrical Characteristics \(T_a = 25^\circ C \) (unless otherwise specified)

Emitter Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameters</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_F)</td>
<td>Forward voltage</td>
<td>(I_f=\pm10mA)</td>
<td>1.24</td>
<td>1.4</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(C_{IN})</td>
<td>Input Capacitance</td>
<td>(f= 1MHz)</td>
<td>-</td>
<td>30</td>
<td>-</td>
<td>pF</td>
<td></td>
</tr>
</tbody>
</table>

Detector Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameters</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B_{VCEO})</td>
<td>Collector-Emitter Breakdown</td>
<td>(I_C= 100\mu A)</td>
<td>80</td>
<td>-</td>
<td>-</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(B_{VEDC})</td>
<td>Emitter-Collector Breakdown</td>
<td>(I_E= 100\mu A)</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(I_{CEO})</td>
<td>Collector-Emitter Dark Current</td>
<td>(V_{CE}= 20V, I_f=0mA)</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>nA</td>
<td></td>
</tr>
</tbody>
</table>

Transfer Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameters</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CTR)</td>
<td>Current Transfer Ratio</td>
<td>CTH214</td>
<td>20</td>
<td>-</td>
<td>300</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CTH214A</td>
<td>50</td>
<td>-</td>
<td>150</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>(CTR)</td>
<td>Current Transfer Ratio</td>
<td>CTH214</td>
<td>30</td>
<td>-</td>
<td>600</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CTH214A</td>
<td>80</td>
<td>-</td>
<td>300</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTR Symmetry</td>
<td>(I_f=\pm1mA, V_{CE}= 5V)</td>
<td>0.7</td>
<td>-</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{CE(SAT)})</td>
<td>Collector-Emitter Saturation Voltage</td>
<td>(I_f= \pm20mA, I_C= 1mA)</td>
<td>-</td>
<td>0.04</td>
<td>0.2</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(R_{IO})</td>
<td>Isolation Resistance</td>
<td>(V_{ID}= 500V_{DC})</td>
<td>5x10^10</td>
<td>-</td>
<td>-</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>(C_{IO})</td>
<td>Isolation Capacitance</td>
<td>(f= 1MHz)</td>
<td>-</td>
<td>0.5</td>
<td>1</td>
<td>pF</td>
<td></td>
</tr>
</tbody>
</table>

Switching Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameters</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_r)</td>
<td>Rise Time</td>
<td>(I_C= 2mA, V_{CE}= 2V, R_L= 100\Omega)</td>
<td>-</td>
<td>6</td>
<td>-</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>(t_f)</td>
<td>Fall Time</td>
<td></td>
<td>-</td>
<td>8</td>
<td>-</td>
<td>μs</td>
<td></td>
</tr>
</tbody>
</table>
Typical Characteristic Curves

Forward Current vs. Ambient Temperature

Forward Current vs. Forward Voltage

Detector Power Dissipation vs. Ambient Temperature

Collector Dark Current vs. Ambient Temperature

Current Transfer Ratio vs. Forward Current

Collector Current vs. Ambient Temperature

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6
CTH214 Series
AC Input 4-Pin Half Pitch Mini-Flat
Phototransistor Optocoupler

Figure 7
Normalized CTR vs Ambient Temperature

Figure 8
Collector-Emitter Saturation Voltage vs Collector Current

Figure 9
Collector-Emitter Saturation Voltage vs Forward Current

Figure 10
Switching Speed vs Load Resistance

Figure 11
Voltage Gain vs Frequency

Figure 12
Collector-Emitter Saturation Voltage vs Ambient Temperature
CTH214 Series

AC Input 4-Pin Half Pitch Mini-Flat

Phototransistor Optocoupler

Package Dimension *Dimensions in mm unless otherwise stated*

![Package Dimensions Diagram](image)

Recommended Solder Mask *Dimensions in mm unless otherwise stated*

![Solder Mask Diagram](image)
Marking Information

- CT: Denotes “CT Micro”
- 214: Product Number
- R: CTR Rank
- V: VDE Option
- Y: Fiscal Year
- WW: Work Week
- K: Manufacturing Code

Ordering Information

CTH214X(V)(Z)

X = Part No. (X=A or none)
V = VDE Option (V or none)
Z = Tape and reel option (T1 or T2)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Surface Mount Lead Forming – With Option 1 Taping</td>
<td>5000 Units/Reel</td>
</tr>
<tr>
<td>T2</td>
<td>Surface Mount Lead Forming – With Option 2 Taping</td>
<td>5000 Units/Reel</td>
</tr>
</tbody>
</table>
Carrier Tape Specifications *Dimensions in mm unless otherwise stated*

Option T1

![Diagram of Carrier Tape Specifications Option T1](image)

Option T2

![Diagram of Carrier Tape Specifications Option T2](image)
CTH214 Series
AC Input 4-Pin Half Pitch Mini-Flat
Phototransistor Optocoupler

Reflow Profile

![Reflow Profile Diagram]

Profile Feature	**Pb-Free Assembly Profile**
Temperature Min. (Tsmin) | 150°C
Temperature Max. (Tsmax) | 200°C
Time (ts) from (Tsmin to Tsmax) | 60-120 seconds
Ramp-up Rate (tl to tp) | 3°C/second max.
Liquidous Temperature (Tl) | 217°C
Time (tl) Maintained Above (Tl) | 60 – 150 seconds
Peak Body Package Temperature | 260°C ±0°C / -5°C
Time (tp) within 5°C of 260°C | 30 seconds
Ramp-down Rate (Tp to Tl) | 6°C/second max
Time 25°C to Peak Temperature | 8 minutes max.
CTH214 Series
AC Input 4-Pin Half Pitch Mini-Flat
Phototransistor Optocoupler

DISCLAIMER
CT MICRO RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. CT MICRO DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

DISCOLORATION MIGHT OCCUR ON THE PACKAGE SURFACE AFTER SOLDERING, REFLOW OR LONG TERM USE. THIS DOES NOT IMPACT THE PRODUCT PERFORMANCE NOR THE PRODUCT RELIABILITY.

CT MICRO ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT EXPRESS WRITTEN APPROVAL OF CT MICRO INTERNATIONAL CORPORATION.

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instruction for use provided in the labelling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.