CT817 Series
DC Input 4-Pin Phototransistor Optocoupler

Features
- High isolation 5000 VRMS
- CTR flexibility available see order information
- DC input with transistor output
- External Creepage ≥ 7.5mm (S/SL Type)
- External Creepage ≥ 8.0mm (SLM Type)
- Operating temperature range - 55 °C to 110 °C
- Regulatory Approvals
 - UL - UL1577 (E364000)
 - VDE - EN60747-5-5(VDE0884-5)
 - CQC – GB4943.1, GB8898
 - IEC60065, IEC60950

Description
The CT817 series consists of a photo transistor optically coupled to a gallium arsenide Infrared-emitting diode in a 4-lead DIP package different lead forming options.

Applications
- Switch mode power supplies
- Computer peripheral interface
- Microprocessor system interface

Note: Different lead forming options available. See package dimension.

Package Outline

Schematic

CT Micro
Proprietary & Confidential
Page 1
Absolute Maximum Rating at 25°C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameters</th>
<th>Ratings</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{ISO}</td>
<td>Isolation voltage (AC, 1 minute)</td>
<td>5000</td>
<td>V_{RMS}</td>
<td></td>
</tr>
<tr>
<td>P_{TOT}</td>
<td>Total power dissipation</td>
<td>200</td>
<td>mW</td>
<td></td>
</tr>
<tr>
<td>T_{OPR}</td>
<td>Operating temperature</td>
<td>-55 ~ +110</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>T_{STG}</td>
<td>Storage temperature</td>
<td>-55 ~ +150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>T_{SOL}</td>
<td>Soldering temperature</td>
<td>260</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

Emitter

- I_F: Forward current
 - Ratings: 60 mA
- $I_{F(TRANS)}$: Peak transient current
 - (≤1μs P.W,300pps)
 - Ratings: 1 A
- V_R: Reverse voltage
 - Ratings: 6 V
- P_D: Emitter power dissipation
 - Ratings: 100 mW

Detector

- P_D: Detector power dissipation
 - Ratings: 150 mW
- B_{VCEO}: Collector-Emitter Breakdown Voltage
 - Ratings: 35 V
- B_{VECO}: Emitter-Collector Breakdown Voltage
 - Ratings: 6 V
- I_C: Collector Current
 - Ratings: 50 mA
Electrical Characteristics

$T_A = 25^\circ C$ (unless otherwise specified)

Emitter Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameters</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_F</td>
<td>Forward voltage</td>
<td>$I_F = 10mA$</td>
<td></td>
<td>1.24</td>
<td>1.4</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_R</td>
<td>Reverse Current</td>
<td>$V_R = 6V$</td>
<td></td>
<td></td>
<td>5</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>C_{IN}</td>
<td>Input Capacitance</td>
<td>$f = 1MHz$</td>
<td></td>
<td>10</td>
<td>30</td>
<td>pF</td>
<td></td>
</tr>
</tbody>
</table>

Detector Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameters</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_{VCEO}</td>
<td>Collector-Emitter Breakdown</td>
<td>$I_C = 100\mu A$</td>
<td>35</td>
<td></td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>B_{VCEO}</td>
<td>Emitter-Collector Breakdown</td>
<td>$I_E = 100\mu A$</td>
<td>6</td>
<td></td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_{CEO}</td>
<td>Collector-Emitter Dark Current</td>
<td>$V_{CE} = 20V, I_F = 0mA$</td>
<td></td>
<td></td>
<td>100</td>
<td>nA</td>
<td></td>
</tr>
</tbody>
</table>

Transfer Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameters</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTR</td>
<td>Current Transfer Ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CT817</td>
<td></td>
<td>50</td>
<td>-</td>
<td>600</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CT817A</td>
<td></td>
<td>80</td>
<td>-</td>
<td>160</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CT817B</td>
<td></td>
<td>130</td>
<td>-</td>
<td>260</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CT817C</td>
<td></td>
<td>200</td>
<td>-</td>
<td>400</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CT817D</td>
<td></td>
<td>300</td>
<td>-</td>
<td>600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{CE(SAT)}$</td>
<td>Collector-Emitter Saturation Voltage</td>
<td>$I_F = 20mA, I_C = 1mA$</td>
<td></td>
<td>0.1</td>
<td>0.2</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>R_{IO}</td>
<td>Isolation Resistance</td>
<td>$V_{ID} = 500V_{DC}$</td>
<td>5×10^{10}</td>
<td>-</td>
<td>-</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>C_{IO}</td>
<td>Isolation Capacitance</td>
<td>$f = 1MHz$</td>
<td></td>
<td>0.25</td>
<td>1</td>
<td>pF</td>
<td></td>
</tr>
</tbody>
</table>

Switching Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameters</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_r</td>
<td>Rise Time</td>
<td>$I_C = 2mA, V_{CE} = 2V$</td>
<td></td>
<td>6</td>
<td>18</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>t_f</td>
<td>Fall Time</td>
<td>$R_L = 100\Omega$</td>
<td></td>
<td>8</td>
<td>18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CT817 Series
DC Input 4-Pin Phototransistor Optocoupler

Typical Characteristic Curves

- **Forward Current vs. Ambient Temperature**
- **Forward Current vs. Forward Voltage**
- **Detector Power Dissipation vs. Ambient Temperature**
- **Collector Dark Current vs. Ambient Temperature**
- **Normalized CTR vs. Forward Current**
- **Collector Current vs. Ambient Temperature**
CT817 Series
DC Input 4-Pin Phototransistor Optocoupler

Normalized CTR vs Ambient Temperature

Collector-Emitter Saturation Voltage vs. Collector Current

Forward Current vs. Collector-Emitter Saturation Voltage

Switching Speed vs. Load Resistance

Voltage Gain vs. Frequency

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11
Test Circuit

Figure 12: Switching Time Test Circuits
Package Dimension *Dimensions in mm unless otherwise stated*

Standard DIP – Through Hole

Gullwing (400mil) Lead Forming – Through Hole (M Type)
CT817 Series
DC Input 4-Pin Phototransistor Optocoupler

Surface Mount Lead Forming (S Type)

Surface Mount (Low Profile) Lead Forming (SL Type)
Surface Mount (Gullwing) Lead Forming (SLM Type)
CT817 Series
DC Input 4-Pin Phototransistor Optocoupler

Recommended Solder Mask *Dimensions in mm unless otherwise stated*

Surface Mount Lead Forming & Surface Mount (Low Profile) Lead Forming

Surface Mount (Gullwing) Lead Forming

Marking Information

Note:
CT : Denotes “CT Micro”
817 : Part Number
V : VDE Option
R : CTR Rank
Y : Fiscal Year
WW : Work Week
K : Manufacturing Code
CT817 Series
DC Input 4-Pin Phototransistor Optocoupler

Ordering Information

CT817X(V)(Y)(Z)-HG

X = Part No. (X=A, B, C, D or None)
V = VDE Option (V or None)
Y = Lead form option (S, SL, M, SLM or none)
Z = Tape and reel option (T1, T2, T3, T4 or none)
H = Lead frame option (H: Iron, None: Copper)
G= Material option (G: Green, None: Non-green)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Standard 4 Pin Dip</td>
<td>100 Units/Tube</td>
</tr>
<tr>
<td>M</td>
<td>Gullwing (400mil) Lead Forming</td>
<td>100 Units/Tube</td>
</tr>
<tr>
<td>S(T1)</td>
<td>Surface Mount Lead Forming – With Option 1 Taping</td>
<td>1500 Units/Reel</td>
</tr>
<tr>
<td>S(T2)</td>
<td>Surface Mount Lead Forming – With Option 2 Taping</td>
<td>1500 Units/Reel</td>
</tr>
<tr>
<td>S(T3)</td>
<td>Surface Mount Lead Forming – With Option 3 Taping</td>
<td>1000 Units/Reel</td>
</tr>
<tr>
<td>S(T4)</td>
<td>Surface Mount Lead Forming – With Option 4 Taping</td>
<td>1000 Units/Reel</td>
</tr>
<tr>
<td>SL(T1)</td>
<td>Surface Mount (Low Profile) Lead Forming– With Option 1 Taping</td>
<td>1500 Units/Reel</td>
</tr>
<tr>
<td>SL(T2)</td>
<td>Surface Mount (Low Profile) Lead Forming – With Option 2 Taping</td>
<td>1500 Units/Reel</td>
</tr>
<tr>
<td>SL(T3)</td>
<td>Surface Mount (Low Profile) Lead Forming– With Option 3 Taping</td>
<td>1000 Units/Reel</td>
</tr>
<tr>
<td>SL(T4)</td>
<td>Surface Mount (Low Profile) Lead Forming – With Option 4 Taping</td>
<td>1000 Units/Reel</td>
</tr>
<tr>
<td>SLM(T1)</td>
<td>Surface Mount (Gullwing) Lead Forming– With Option 1 Taping</td>
<td>1500 Units/Reel</td>
</tr>
<tr>
<td>SLM(T2)</td>
<td>Surface Mount (Gullwing) Lead Forming – With Option 2 Taping</td>
<td>1500 Units/Reel</td>
</tr>
</tbody>
</table>
Carrier Tape Specifications

Dimensions in mm unless otherwise stated

Option S(T1) & SL(T1)

Input Direction

Option S(T2) & SL(T2)

Input Direction
CT817 Series
DC Input 4-Pin Phototransistor Optocoupler

Option S(T3) & SL(T3)

Input Direction

Option S(T4) & SL(T4)

Input Direction
Option SLM(T1)

Input Direction

Option SLM(T2)

Input Direction
Wave soldering (follow the JEDEC standard JESD22-A111)

One time soldering is recommended within the condition of temperature.
Temperature: 260±0/-5°C.
Time: 10 sec.
Preheat temperature: 25 to 140°C.
Preheat time: 30 to 80 sec.

Iron soldering (follow the standard MIL-STD 202G, Method 210F)

Allow single lead soldering in every single process.
One time soldering is recommended. Temperature: 350±10°C
Time: 5 sec max.
Reflow Profile

<table>
<thead>
<tr>
<th>Profile Feature</th>
<th>Pb-Free Assembly Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Min. (Tsmin)</td>
<td>150°C</td>
</tr>
<tr>
<td>Temperature Max. (Tmax)</td>
<td>200°C</td>
</tr>
<tr>
<td>Time (ts) from (Tsmin to Tmax)</td>
<td>60-120 seconds</td>
</tr>
<tr>
<td>Ramp-up Rate (tl to tp)</td>
<td>3°C/second max.</td>
</tr>
<tr>
<td>Liquidous Temperature (TL)</td>
<td>217°C</td>
</tr>
<tr>
<td>Time (tl) Maintained Above (TL)</td>
<td>60 – 150 seconds</td>
</tr>
<tr>
<td>Peak Body Package Temperature</td>
<td>260°C +0°C / -5°C</td>
</tr>
<tr>
<td>Time (tp) within 5°C of 260°C</td>
<td>30 seconds</td>
</tr>
<tr>
<td>Ramp-down Rate (TP to TL)</td>
<td>6°C/second max.</td>
</tr>
<tr>
<td>Time 25°C to Peak Temperature</td>
<td>8 minutes max.</td>
</tr>
</tbody>
</table>
DISCLAIMER
CT MICRO RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. CT MICRO DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

DISCOLORATION MIGHT OCCUR ON THE PACKAGE SURFACE AFTER SOLDERING, REFLOW OR LONG TERM USE. THIS DOES NOT IMPACT THE PRODUCT PERFORMANCE NOR THE PRODUCT RELIABILITY.

CT MICRO ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT EXPRESS WRITTEN APPROVAL OF CT MICRO INTERNATIONAL CORPORATION.

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instruction for use provided in the labelling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.