CT815 DC Input 4-Pin Photodarlington Optocoupler

Features
- High isolation 5000 V_{RMS}
- DC input with Darlington output
- External Creepage ≥ 7.5mm (S/SL Type)
- External Creepage ≥ 8.0mm (SLM Type)
- Operating temperature range - 55 °C to 110 °C
- Regulatory Approvals
 - UL - UL1577 (E364000)
 - VDE - EN60747-5-5(VDE0884-5)
 - CQC – GB4943.1, GB8898
 - IEC60065, IEC60950

Description
The CT815 series consists of a photodarlington transistor optically coupled to a gallium arsenide Infrared-emitting diode in a 4-lead DIP package with bending option.

Applications
- Power supply regulators
- Digital logic outputs
- Microprocessor inputs

Package Outline

Schematic

Anode 1
Cathode 2
Collector 4
Emitter 3
Absolute Maximum Rating at 25°C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameters</th>
<th>Ratings</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>VISO</td>
<td>Isolation voltage</td>
<td>5000</td>
<td>V_RMS</td>
<td></td>
</tr>
<tr>
<td>T_OPR</td>
<td>Operating temperature</td>
<td>-55 ~ +110</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>T_STG</td>
<td>Storage temperature</td>
<td>-55 ~ +150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>T_SOL</td>
<td>Soldering temperature</td>
<td>260</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>P_TOT</td>
<td>Total power dissipation</td>
<td>200</td>
<td>mW</td>
<td></td>
</tr>
</tbody>
</table>

Emitter

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameters</th>
<th>Ratings</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_F</td>
<td>Forward current</td>
<td>60</td>
<td>mA</td>
</tr>
<tr>
<td>I_F(TRANS)</td>
<td>Peak transient current</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>V_R</td>
<td>Reverse voltage</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>P_D</td>
<td>Power dissipation</td>
<td>100</td>
<td>mW</td>
</tr>
</tbody>
</table>

Detector

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameters</th>
<th>Ratings</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_C</td>
<td>Power dissipation</td>
<td>150</td>
<td>mW</td>
</tr>
<tr>
<td>B_VCEO</td>
<td>Collector-Emitter Breakdown Voltage</td>
<td>40</td>
<td>V</td>
</tr>
<tr>
<td>B_VECO</td>
<td>Emitter-Collector Breakdown Voltage</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>I_C</td>
<td>Collector Current</td>
<td>80</td>
<td>mA</td>
</tr>
</tbody>
</table>
CT Micro
Proprietary & Confidential

DC Input 4-Pin Photodarlington Optocoupler

Electrical Characteristics \(T_A = 25^\circ C (\text{unless otherwise specified}) \)

Emitter Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameters</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_F)</td>
<td>Forward voltage</td>
<td>(I_F = 10mA)</td>
<td>-</td>
<td>1.24</td>
<td>1.4</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(I_R)</td>
<td>Reverse Current</td>
<td>(V_R = 6V)</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>(\mu)A</td>
<td></td>
</tr>
<tr>
<td>(C_{IN})</td>
<td>Input Capacitance</td>
<td>(f = 1MHz)</td>
<td>-</td>
<td>30</td>
<td>250</td>
<td>pF</td>
<td></td>
</tr>
</tbody>
</table>

Detector Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameters</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B_{VCEO})</td>
<td>Collector-Emitter Breakdown</td>
<td>(I_C = 100\mu A)</td>
<td>40</td>
<td>-</td>
<td>-</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(B_{VCEO})</td>
<td>Emitter-Collector Breakdown</td>
<td>(I_E = 100\mu A)</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(I_{CEO})</td>
<td>Collector-Emitter Dark Current</td>
<td>(V_{CE} = 10V, I_F = 0mA)</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>(\mu)A</td>
<td></td>
</tr>
</tbody>
</table>

Transfer Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameters</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CTR)</td>
<td>Current Transfer Ratio</td>
<td>(I_F = 1mA, V_{CE} = 2V)</td>
<td>600</td>
<td>-</td>
<td>7500</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>(V_{CE(SAT)})</td>
<td>Collector-Emitter Saturation Voltage</td>
<td>(I_F = 20mA, I_C = 5mA)</td>
<td>-</td>
<td>0.8</td>
<td>1</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(R_{IO})</td>
<td>Isolation Resistance</td>
<td>(V_{IO} = 500V_{DC})</td>
<td>(5x10^{10})</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_{IO})</td>
<td>Isolation Capacitance</td>
<td>(f = 1MHz)</td>
<td>-</td>
<td>0.25</td>
<td>1</td>
<td>pF</td>
<td></td>
</tr>
</tbody>
</table>

Switching Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameters</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_r)</td>
<td>Rise Time</td>
<td>(I_C = 10mA, V_{CE} = 2V, R_L = 100)</td>
<td>-</td>
<td>-</td>
<td>300</td>
<td>(\mu)S</td>
<td></td>
</tr>
<tr>
<td>(t_f)</td>
<td>Fall Time</td>
<td></td>
<td>-</td>
<td>-</td>
<td>250</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CT815
DC Input 4-Pin Photodarlington Optocoupler

Typical Characteristic Curves

Figure 1: Forward Current vs. Ambient Temperature

Figure 2: Forward Current vs. Forward Voltage

Figure 3: Detector Power Dissipation vs. Ambient Temperature

Figure 4: Collector Dark Current vs. Ambient Temperature

Figure 5: Current Transfer Ratio vs. Forward Current

Figure 6: Collector Current vs. Ambient Temperature

Normalized to:
- $I_p=1\text{mA}$
- $V_{pe}=2\text{V}$
- $T_a=25^\circ\text{C}$
DC Input 4-Pin Photodarlington Optocoupler

Package Dimension *Dimensions in mm unless otherwise stated*

Standard DIP – Through Hole

![Diagram of Standard DIP – Through Hole](image)

Gullwing (400mil) Lead Forming – Through Hole (M Type)

![Diagram of Gullwing (400mil) Lead Forming – Through Hole (M Type)](image)
Surface Mount Lead Forming (S Type)

Surface Mount (Low Profile) Lead Forming (SL Type)
DC Input 4-Pin Photodarlington Optocoupler

Surface Mount (Gullwing) Lead Forming (SLM Type)
Recommended Solder Mask

Dimensions in mm unless otherwise stated

Surface Mount Lead Forming & Surface Mount (Low Profile) Lead Forming

Surface Mount (Gullwing) Lead Forming

Marking Information

Note:
CT : Denotes “CT Micro”
815 : Part Number
V : VDE Option
Y : Fiscal Year
WW : Work Week
K : Manufacturing Code
CT815
DC Input 4-Pin Photodarlington Optocoupler

Ordering Information

CT815(Y)(Z)-G

Y = Lead form option (S, SL, M, SLM or none)
Z = Tape and reel option (T1, T2, T3, T4 or none)
G = Material option (G: Green, None: Non-green)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Standard 4 Pin DIP</td>
<td>100 Units/Tube</td>
</tr>
</tbody>
</table>
Carrier Tape Specifications *Dimensions in mm unless otherwise stated*

Option S(T1) & SL(T1)

```
Input Direction
```

```
4.00  2.00  1.75
 7.50  16.00
8.00
```

Option S(T2) & SL(T2)

```
Input Direction
```

```
4.00  2.00  1.75
 7.50  16.00
8.00
```

CT Micro
Proprietary & Confidential
Option S(T3) & SL(T3)

Input Direction

<table>
<thead>
<tr>
<th>4.00</th>
<th>2.00</th>
<th>Ø1.50</th>
<th>1.75</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.00</td>
<td>7.50</td>
<td>4.80</td>
<td></td>
</tr>
</tbody>
</table>

Option S(T4) & SL(T4)

Input Direction

<table>
<thead>
<tr>
<th>4.00</th>
<th>2.00</th>
<th>Ø1.50</th>
<th>1.75</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.00</td>
<td>7.50</td>
<td>4.80</td>
<td></td>
</tr>
</tbody>
</table>
Option SLM(T1)

Input Direction

Option SLM(T2)

Input Direction
Reflow Profile

Profile Feature	Pb-Free Assembly Profile
Temperature Min. (Tsmin) | 150°C
Temperature Max. (Tmax) | 200°C
Time (ts) from (Tsmin to Tmax) | 60-120 seconds
Ramp-up Rate (tl to tp) | 3°C/second max.
Liquidous Temperature (Tl) | 217°C
Time (tl) Maintained Above (Tl) | 60 – 150 seconds
Peak Body Package Temperature | 260°C +0°C / -5°C
Time (tp) within 5°C of 260°C | 30 seconds
Ramp-down Rate (Tp to Tl) | 6 °C/second max
Time 25°C to Peak Temperature | 8 minutes max.
CT MICRO RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. CT MICRO DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

DISCOLORATION MIGHT OCCUR ON THE PACKAGE SURFACE AFTER SOLDERING, REFLOW OR LONG TERM USE. THIS DOES NOT IMPACT THE PRODUCT PERFORMANCE NOR THE PRODUCT RELIABILITY.

CT MICRO ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT EXPRESS WRITTEN APPROVAL OF CT MICRO INTERNATIONAL CORPORATION.

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instruction for use provided in the labelling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.